A PROPERTY OF BICRITERIA AFFINE VECTOR VARIATIONAL INEQUALITIES

Nguyễn Thị Thu Hương, Trần Ninh Hoa, Tạ Duy Phượng, Nguyễn Đông Yên

Tóm tắt


By a scalarization method, it is proved that both the Pareto solution set and the weak Pareto solution set of a bicriteria affine vector variational inequality have finitely many connected. components provided that a regularity condition is satisfied. An explicit upper bound for the numbers of connected components of the Pareto solution set and the weak. Pareto solution set is obtained. Consequences of the results for bicriteria quadratic vector optimization problems and linear fractional vector optimization problems are discussed in detail. Under an additional assumption on the data set, Theorems 3.1 and 3.2 in this paper solve in the affirmative Question 1 in [17, p. 66] and Question 9.3 in [151 for the case of bicriteria problems without requiring the monotonicity. Besides, the theorems also give a partial solution to Question 2 in [17] about finding an upperboundfor the numbers ofconnected components of the solution sets under investigation.


Từ khóa


Bicriteria affine vector variational inequality; Acalarlaation; Solution set; Connectedness; Number of connected components

Các bài báo tham chiếu

  • Hiện tại không có bài báo tham chiếu.


Copyright (c) 2012 Nguyễn Thị Thu Hương, Trần Ninh Hoa, Tạ Duy Phượng, Nguyễn Đông Yên

Creative Commons License
Công trình này được cấp phép theo Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Văn phòng Tạp chí Đại học Đà Lạt
Nhà A25 - Số 1 Phù Đổng Thiên Vương, Đà Lạt, Lâm Đồng
Email: tapchikhoahoc@dlu.edu.vn - Điện thoại: (+84) 263 3 555 131

Creative Commons License
Trên nền tảng Open Journal Systems
Thực hiện bởi Khoa Công nghệ Thông tin