CẢI TIẾN PHÁT HIỆN TẤN CÔNG SỬ DỤNG VĂN PHẠM NỐI CÂY TRONG LẬP TRÌNH GEN
Tóm tắt
Từ khóa
Toàn văn:
PDFCác tài liệu tham khảo
Abadeh, M. S., Habibi, J., & Lucas, C. (2007). Intrusion detection using a fuzzy genetics-based learning algorithm. Journal of Network and Computer Applications, 30(1), 414-428.
Abdullah, B., Abd-Alghafar, I., Gouda, I., & Salama, A. A. (2009). Performance avaluation of a genetic algorithm based approach to network intrusion detection system. Paper presented at The 13th International Conference on Aerospace Sciences and Aviation Technology, USA.
Ahmad, I., Hussain, M., Alghamdi, A., & Alelaiwi, A. (2013). Enhancing SVM performance in intrusion detection using optimal feature subset selection based on genetic principal components. Springer Open, 24(7-8), 1671-1682.
Al-Jarrah, O. Y., Siddiqui, A., Elsalamouny, M., Yoo, P. D., Muhaidat, S., & Kim, K. (2014). Machine learning based feature selection techniques for large-scale network intrusion detection. Paper presented at The IEEE 34th International Conference on Distributed Computing Systems Workshops, USA.
Anup, G., & Chetan, K. (2008). GA-NIDS: A Genetic algorithm based network intrusion detection system. Retrieved from https://www.researchgate.net/publication/ 228791237_GA-NIDS_A_Genetic_Algorithm_based_Network_Intrusion_ Detection_System
Botha, M., & Solms, R. (2004). Utilizing neural networks for effective intrusion detection. Retrieved from http://icsa.cs.up.ac.za/issa/2004/Proceedings/Full/040.pdf
Bridges, S. M., & Vaughn, R. B. (2000). Fuzzy data mining and genetic algorithms applied to intrusion detection. Paper presented at The Twenty-third National Information Systems Security Conference, USA.
Crosbie, M., & Spafford, E. (1995). Applying genetic programming to intrusion detection. International Journal of Science and Research, 2(6), 480-483.
Devarakonda, N., & Pamidi, S. (2012). Intrusion detection system using Bayesian network and Hidden Markov model. Procedia Technology, 4(1), 506-514.
Faraoun, K. M., Boukelif, A., & Algeria, S. B. A. (2006). Genetic programming approach for multi-category pattern classification applied to network intrusions detection. International Journal of Computational Intelligence and Applications, 6(1), 3098-3109.
Gomez, J., & Dasgupta, D. (2002). Evolving fuzzy rules for intrusion detection. Paper presented at The Third Annual IEEE Information Assurance Workshop 2002 Conference, USA.
Gong, R. H., Zulkernine, M., & Abolmaesumi, P. (2005). A software implementation of a genetic algorithm based approach to network intrusion detection. Paper presented at The Sixth International Conference on Software Engineering, USA.
Koza, J. R. (1992). Genetic programming: On the programming of computers by means of natural selection. Massachusetts, USA: MIT Press.
Le, H. N., Hoang, T. H., & Vu, V. C. (2015). Self-adaptive srossover and mutation parameters in tree adjoining grammar guided genetic programming. Tạp chí Khoa học và Kỹ thuật Học viện Kỹ thuật Quân sự, 15(6), 5-15.
Leung, Y., So, L., & Yam, K. F. (1992). Rule learning in expert systems using genetic algorithm. Paper presented at The International Conference on Fuzzy Logic & Neural Networksm, Japan.
Li, W. (2004). Using genetic algorithm for network intrusion detection. Retrieved from https://pdfs.semanticscholar.org/9175/54c7cce69e6ee9708020863f2bd27fa986a6.pdf.
Lu, W., & Traore, I. (2004). Detecting new forms of network intrusion using genetic programming. Computational Intelligence, 20(3), 475-494.
Middlemiss, M., & Dick, G. (2003). Feature selection of intrusion detection data using a hybrid genetic algorithm/KNN approach. Amsterdam, Netherlands: IOS Press.
Mukkamala, S., Andrew, H. S., & Ajith, A. (2005). Intrusion detection using an ensemble of intelligent paradigms. Journal of Network and Computer Applications, 28(2), 167-182.
Nguyen, X. H., McKay, R. I., & Abbass, H. A. (2003). Tree adjoining grammars, language bias, and genetic programming. Paper presented at The EuroGP2003, Netherlands.
Peddabachigari, S., Ajith, A. G., & Thomas, J. (2007). Modeling intrusion detection system using hybrid intelligent systems. Journal of Network and Computer Applications, 30(1), 114-132.
Peng, T., Leckie, C., & Kotagiri, R. (2007). Information sharing for distributed intrusion detection systems. Journal of Network and Computer Applications, 30(3), 877-899.
Pham, T. S., Nguyen, Q. U., & Nguyen, X. H. (2014). Generating artificial attack data for intrusion detection using machine learning. Paper presented at The Fifth Symposium on Information and Communication Technology Conference, Vietnam.
Pillai, M. M., Eloff, J. H. P., & Venter, H. S. (2004). An approach to implement a network intrusion detection system using genetic algorithms. Paper presented at The SAICSIT, South Africa.
UCI KDD Archive. (1999). KDD cup 1999 data. Retrieved from http://kdd.ics.uci.edu/ databases/kddcup99/kddcup99.html
Wong, M. L., Leung, K. S., & Cheng, J. C. Y. (2000). Discovering knowledge from noisy databases using genetic programming. Journal of the American Society for Information Science and Technology, 51(9), 870-881.
DOI: http://dx.doi.org/10.37569/DalatUniversity.7.3.339(2017)
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu.
Copyright (c) 2017 Vũ Văn Cảnh, Hoàng Tuấn Hảo, Nguyễn Văn Hoàn

Công trình này được cấp phép theo Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.