PHÁT HIỆN TẬP PHỔ BIẾN GÂY NHẦM LẪN
Tóm tắt
Từ khóa
Toàn văn:
PDFCác tài liệu tham khảo
Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. Paper presented at The 20th International Conference on Very Large Data Bases, Chile.
Barsky, M., Kim, S., Weninger, T., & Han, J. (2011). Mining flipping correlations from large datasets with taxonomies. Paper presented at The 38th International Conference on Very Large Data Bases, Turkey.
Brin, S., Motwani, R., & Silverstein, C. (1997). Beyond market baskets generalizing association rules to correlations. Paper presented at The ACM SIGMOD International Conference on Management of Data, USA.
Cagliero, L., Cerquitelli, T., Garza, P., & Grimaudo, L. (2014). Misleading generalized itemset discovery. Expert Systems with Applications, 41(4), 1400-1410.
Dheeru, D., & Karra, T. E. (2017). Machine learning repository. Retrieved from http://archive.ics.uci.edu/ml.
Fournier, V. P., Lin, J. C., Vo, B., Truong, C. T., Zhang, J., & Le, H. B. (2017). A survey of itemset mining. WIREs: Data Mining and Knowledge Discovery, 7(4), 1-18.
Han, J., Pei, J., & Yin, Y. (2000). Mining frequent patterns without candidate generation. Paper presented at The ACM SIGMOD International Conference on Management of Data, Canada.
Srikant, R., & Agrawal, R. (1995). Mining generalized association rules. Future Generation Computer Systems, 13(2-3), 161-180.
Tan, P. N., Kumar, V., & Srivastava, J. (2002). Selecting the right interestingness measure for association patterns. Paper presented at The ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
Tan, P. N., Steinbach, M., & Kumar, V. (2005). Introduction to data mining (2nd ed.). Boston, USA: Pearson Addison Wesley.
Uno, T., Kiyomi, M., & Arimura, H. (2004). LCM ver. 2: Efficient mining algorithms for frequent/closed/maximal itemsets. Paper presented at The IEEE ICDM Workshop Frequent Itemset Mining Implementations, USA.
Wu, T., Chen, Y., & Han, J. (2007). Association mining in large databases: A re-examination of its measures. Paper presented at The European Conference on Principles of Data Mining and Knowledge Discovery, Germany.
Wu, T., Chen, Y., & Han, J. (2010). Re-examination of interestingness measures in pattern mining: A unified framework. Data Mining and Knowledge Discovery, 21(3), 371-397.
Zaki, M. J., & Gouda, K. (2003). Fast vertical mining using diffsets. Paper presented at The ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, USA.
DOI: http://dx.doi.org/10.37569/DalatUniversity.8.2.440(2018)
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu.
Copyright (c) 2018 Huỳnh Thành Lộc

Công trình này được cấp phép theo Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.