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1. INTRODUCTION

This is an expository note intended to give a brief description of some of the main
results of our paper Maxim and Schürmann (2020) (see also Maxim & Schürmann, 2018)
concerning invariants of external products of suitable coefficients on possibly singular
complex quasi-projective varieties. Along the way, we provide a historical overview of
the study of geometry and topology of various spaces of objects associated with a given
variety.

1.1. Motivation

Recall that to a possibly singular complex quasi-projective variety X , one can as-
sociate the following “moduli” spaces of objects:

(a) the n-th external product Xn, which is the product of n copies of X ; it comes
equipped with the natural action of the symmetric group Σn on n elements.

(b) the n-th symmetric product SnX := Xn/Σn, which parametrizes effective zero-
cycles on X , with the natural projection map denoted by πn : Xn → SnX .

(c) the configuration space of ordered n-tuples of distinct points in X , that is,
FnX := {(x1,x2, . . . ,xn) ∈ Xn | xi ̸= x j for i ̸= j},

which is endowed with (the restriction of) the natural Σn-action (on Xn).

(d) the configuration space CnX :=FnX/Σn of unordered n-tuples of distinct points
in X .

(e) the Hilbert scheme HilbnX , which is the moduli space for zero-dimensional
subschemes of X of length n, describing collections of n (not necessarily distinct)
points on X . It comes equipped with a natural morphism HilbnX → SnX to the
n-th symmetric product of X , the Hilbert-Chow morphism, which takes a zero-
dimensional scheme to its associated zero-cycle.

Such moduli spaces of objects associated with a given variety X carry interesting
and surprising structures that contain valuable information about the variety X itself. For
instance, the symmetric products SnX were used by Macdonald (1962b) to study the Ja-
cobian variety of X in the case that X is a smooth curve. If X is a smooth complex surface,
Cheah (1996) and Göttsche and Soergel (1993) used its symmetric products to understand
the topology of Hilbert schemes of points on X . Moreover, the Bridgeland-King-Reid cor-
respondence of Bridgeland et al. (2001) shows that in this case the n-th Hilbert scheme
HilbnX can be understood via a Σn-equivariant study of Xn.

Configuration spaces, widely used in robot motion planning, appear also in the
study of the topology of moduli spaces of stable curves, e.g., in the work of Getzler,
Looijenga, etc. Symmetric products and configuration spaces have also been recently

5
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studied from a probabilistic perspective in Vakil and Wood (2015) in relation to stabil-
ity/stabilization phenomena (see also Kupers & Miller, 2016).

It is therefore important to understand the geometry and topology of such moduli
spaces (denoted generically by MnX) built out of a given variety X . The standard ap-
proach to compute invariants I (−) of any of these moduli spaces is to collect them in a
generating series ∑n≥0 I (MnX) · tn and to calculate this expression solely in terms of the
invariants of X . Then, the corresponding invariant of MnX is equal to the coefficient of tn

in the resulting expression in terms of invariants of X .

1.2. Historical overview

Many of the generating series formulae in the literature were initially conjectured
in (or inspired from) physics and deal mainly with invariants of the moduli space itself.

For instance, in the context of symmetric products, there is a well-known formula
due to Macdonald (1962a) for the generating series of the Betti numbers

bk(X) := dimCHk(X ,C),

Poincaré polynomial
P(X) := ∑

k≥0
bk(X) · (−z)k,

and topological Euler characteristic χ(X) = P(X)(1) of a compact triangulated space X :

∑
n≥0

P(SnX)(z) · tn = exp

(
∑
r≥1

P(X)(zr) · tr

r

)
(1)

and

∑
n≥0

χ(SnX) · tn = exp

(
∑
r≥1

χ(X) · tr

r

)
= (1− t)−χ(X) . (2)

Macdonald’s formula was extended to the Chern-MacPherson classes (see MacPher-
son, 1974) of symmetric products by Ohmoto (2008). Moonen (1978) obtained the gen-
erating series for the arithmetic genus

χa(X) := ∑
k≥0

(−1)k ·dimCHk(X ,OX)

of symmetric products of a complex projective variety:

∑
n≥0

χa(SnX) · tn = exp

(
∑
r≥1

χa(X) · tr

r

)
= (1− t)−χa(X) (3)

and, more generally, for the Baum-Fulton-MacPherson homology Todd classes (see Baum
et al., 1975) of symmetric products of complex projective varieties. Zagier (1972) proved
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such generating series for the signature σ(X) and L-classes, respectively, of symmetric
products of compact triangulated (rational homology) manifolds. For instance, Zagier
showed that for a complex projective homology manifold X of pure even complex dimen-
sion, one has

∑
n≥0

σ(SnX) · tn =
(1+ t)

σ(X)−χ(X)
2

(1− t)
σ(X)+χ(X)

2

. (4)

If X is a complex quasi-projective variety and

hp,q,k
(c) (X) := hp,q(Hk

(c)(X ,Q)) := dimCGrp
FGrW

p+qHk
(c)(X ,C)

are the Hodge numbers of Deligne’s mixed Hodge structure on the (compactly supported)
cohomology H∗

(c)(X ,Q), with generating mixed Hodge polynomial

h(c)(X)(y,x,z) := ∑
p,q,k≥0

hp,q,k
(c) (X) · ypxq(−z)k,

then the generating series for the Hodge numbers of symmetric products of X is given by
Cheah (1996) as

∑
n≥0

h(c)(S
nX)(y,x,z) · tn = exp

(
∑
r≥1

h(c)(X)(yr,xr,zr) · tr

r

)
. (5)

Note that for a quasi-projective variety X one has

bk(X) = ∑
p,q

hp,q,k(X),

so one gets back formula (1) by substituting (y,x) = (1,1) in (5). Similarly, using the
relation

χ−y(X) = h(X)(y,1,1)

for a complex projective variety X , one gets for the Hirzebruch χy-polynomial the identity:

∑
n≥0

χ−y(SnX) · tn = exp

(
∑
r≥1

χ−yr(X) · tr

r

)
. (6)

Let us also note that for a complex projective manifold X , one also has

χa(X) = χ0(X) = h(X)(0,1,1) and σ(X) = χ1(X) = h(X)(−1,1,1) ,

so that one gets back (3) and (4) for this case by letting (y,x,z) = (0,1,1) and (y,x,z) =
(−1,1,1), respectively. Generating series for the Hirzebruch χy-genus of symmetric prod-
ucts of smooth compact varieties, and, more generally, for elliptic genera, were also ob-
tained in Borisov and Libgober (2002).

Hilbert schemes of points on a smooth surface are smooth and their topology is
fairly well understood: there exist generating series for their Betti numbers (see Göttsche,
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1990), Hodge numbers (see Göttsche & Soergel, 1993), elliptic genus (see Borisov &
Libgober, 2003), Grothendieck motives (see Göttsche, 2001), cobordism classes (see
Ellingsrud et al., 2001), etc. Much less is known about the Hilbert schemes of points
on a smooth variety X of dimension d ≥ 3 (These are usually not smooth). Cheah (1996)
found a generating function expressing the Hodge-Deligne polynomials hc(−)(y,x,1) of
Hilbert schemes HilbnX in terms of the Hodge-Deligne polynomial of X and those of
the punctual Hilbert schemes Hilbi

Cd ,0 of all zero-dimensional subschemes in the affine
space Cd that are supported at the origin. Cheah’s result was refined in Gusein-Zade et
al. (2006), where the notion of power structure over the Grothendieck ring of varieties
was used to express the generating series of Grothendieck motives of Hilbert schemes of
points on a quasi-projective manifold of dimension d as an exponent of that for the affine
space Cd .

It is also natural to investigate such generating series for more “singular” invari-
ants, e.g., for the signature, Hodge numbers, etc., defined via Goresky-MacPherson’s
intersection cohomology theory (see Goresky & MacPherson, 1980, 1983) or, more gen-
erally, for invariants associated with arbitrary “coefficients.”

In the case of symmetric products, this approach was initiated in Maxim et al.
(2011) where, starting with a complex of mixed Hodge modules M on a quasi-projective
variety X , one defines symmetric power complexes

SnM := (πn∗M
⊠n)Σn

on the n-th symmetric product SnX and derives generating series for their Hodge numbers

hp,q,k
(c) (SnX ,SnM ) := hp,q(Hk

(c)(S
nX ;SnM )) := dimCGrp

FGrW
p+qHk

(c)(S
nX ;SnM)C

(k ∈ Z), expressed only in terms of the Hodge numbers hp,q,k
(c) (X ,M ) of H∗

(c)(X ;M ). For
various choices of coefficients M on X , the resulting formula recovers, or extends to
the singular setting, many of the above-mentioned results about invariants of symmetric
products. For example, Cheah’s computation of the Hodge numbers of symmetric prod-
ucts of X corresponds to the choice of the constant Hodge module M = QH

X . Moreover,
by considering M = ICH

X , the Deligne intersection cohomology complex (see Goresky
& MacPherson, 1983), Zagier’s formula for the signature of symmetric products of ra-
tional homology manifolds is extended to the case of Goresky-MacPherson signatures of
symmetric products. A more conceptual proof of these results was given in Maxim and
Schürmann (2012) by relating symmetric group actions on external products to the theory
of lambda rings. In relation to the configuration spaces CnX in Maxim and Schürmann
(2012), one also defines alternating power complexes CnM of mixed Hodge modules and
computes generating series for their corresponding Hodge numbers.

By building on Maxim et al. (2011) and Cappell et al. (2012), Cappell et al.
(2017) derive generating series for the Brasselet-Schürmann-Yokura homology Hirze-
bruch classes Ty∗(S

nM ) (Brasselet et al., 2010) of symmetric powers of a complex of
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mixed Hodge modules M on a variety X . In the special case M = QH
X , this yields a

generating series for the motivic Hirzebruch classes Ty∗(S
nX) of symmetric products of

X , recovering as a corollary Ohmoto’s generating series formula (Ohmoto, 2008) for the
rationalized Chern-MacPherson classes of symmetric products, while at the same time
providing a characteristic class version of formula (6).

Furthermore, the symmetric product formula from Cappell et al. (2017) was ap-
plied in Cappell et al. (2013) to the study of Hirzebruch-type invariants of Hilbert schemes
of points on a quasi-projective manifold and, in the case of a Calabi-Yau 3-fold, it yields a
Chern class version of the Maulik-Nekrasov-Okounkov-Pandharipande (MNOP) conjec-
ture (Maulik et al., 2006) from Donaldson-Thomas theory. This conjecture, which by now
admits several different proofs, predicted a 3-dimensional analogue of Göttsche’s gener-
ating series formula (Göttsche, 1990) for the Euler characteristics of Hilbert schemes of
points on smooth projective surfaces.

Some of the above-mentioned results have been refined in two papers (Maxim &
Schürmann, 2018, 2020) mentioned earlier via the equivariant study of external products
of varieties and coefficients. This approach is inspired by the BKR correspondence of
Bridgeland et al. (2001).

In Maxim and Schürmann (2018), we obtained generating series formulae for
equivariant characteristic classes, introduced in Cappell et al. (2012), of external and
symmetric products of singular complex quasi-projective varieties. More concretely, we
considered equivariant versions of homology Todd, Chern, and Hirzebruch classes with
values in the delocalized Borel-Moore homology of external and symmetric products. As
a byproduct, we obtained new equivariant generalizations of the above-mentioned char-
acteristic class formulae for symmetric powers of coefficients from Cappell et al. (2017),
particularly in the context of twisting by representations of the symmetric group (e.g.,
for various other Schur functors). Furthermore, the equivariant techniques developed in
Maxim and Schürmann (2018) also yield new (or recover old) generating series identities
in the framework of orbifold cohomology and K-theory, respectively.

In Maxim and Schürmann (2020), we proved generating series formulae for the
characters of virtual cohomology representations of external products of suitable coef-
ficients (e.g., constructible or coherent sheaves, or mixed Hodge modules) on complex
quasi-projective varieties. These formulae generalize some of our previous results from
Maxim and Schürmann (2012) and Maxim et al. (2011) for symmetric and alternating
powers of such coefficients, and also apply to other Schur functors.

1.3. Goal of this paper

In order to keep the exposition as simple as possible, in this note we give a brief
description of the main results and key ideas from Maxim and Schürmann (2020) con-
cerning Poincaré-type identities for invariants of external products of suitable coefficients
on complex quasi-projective varieties. While their characteristic class counterparts from
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Maxim and Schürmann (2018) are similar in spirit, the presentation of such characteristic
class formulae would be much more technically demanding.

2. RESULTS

2.1. Coefficients and their associated invariants

Let X be a complex quasi-projective variety. We consider coefficients M ∈ A(X),
where A(X) is one of the following:

(1) Db
c(X), the bounded derived category of constructible sheaf complexes of C-

vector spaces (e.g., M = CX , ICX );

(2) Db
coh(X), the bounded derived category of complexes of OX -modules with co-

herent cohomology, if X is projective (e.g., M = OX ); and

(3) DbMHM(X), the bounded derived category of algebraic mixed Hodge mod-
ules on X (e.g., M =QH

X , IC
H
X ).

For any M ∈ A(X) as above, each (compactly supported) hypercohomology group
Hk
(c)(X ,M ) is a finite-dimensional C-vector space, or a Q-mixed Hodge structure if

A(X) = DbMHM(X). Let

bk
(c)(X ,M ) := dimHk

(c)(X ,M )

be the k-th Betti number of M , with generating Poincaré polynomial

P(c)(X ,M )(z) := ∑k bk
(c)(X ,M ) · (−z)k ∈ Z[z±1].

For M ∈ DbMHM(X), we also let

hp,q,k
(c) (X ,M ) := hp,q(Hk

(c)(X ,M )) := dimCGrp
FGrW

p+qHk
(c)(X ,M )C

be the Hodge numbers of (X ,M ), with generating mixed Hodge polynomial

h(c)(X ,M )(y,x,z) := ∑
p,q,k

hp,q,k
(c) (X ,M ) · ypxq(−z)k ∈ Z[y±1,x±1,z±1].

Here, Hk
(c)(X ,M )C denotes the underlying C-vector space of the Q-mixed Hodge struc-

ture on Hk
(c)(X ,M ).

For simplicity of exposition, in what follows we focus on Poincaré-type identities,
but similar results hold in the mixed Hodge context, for the graded parts with respect to
the Hodge and weight filtrations, if A(X) = DbMHM(X).
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2.2. Cohomology representations of external products

Let X be a complex quasi-projective variety, and consider coefficient theories A(X)
as discussed in Section 2.1.

For any M ∈ A(X), the external product M⊠n ∈ A(Xn) has a natural Σn-action
(e.g., see Maxim et al., 2011), and there is a Σn-equivariant Künneth isomorphism of
C-vector spaces, or Q-mixed Hodge structures if A(X) = DbMHM(X):

H∗
(c)(X

n,M⊠n)≃ H∗
(c)(X ,M )⊗n. (7)

More generally, if V is a complex Σn-representation and M ∈ A(X), one can con-
sider twisted coefficients V ⊗M⊠n ∈ A(Xn) on Xn, with the induced diagonal Σn-action.
Then the following Σn-equivariant Künneth isomorphism of C-vector spaces, or Q-mixed
Hodge structures if A(X) = DbMHM(X) holds:

H∗
(c)(X

n,V ⊗M⊠n)≃V ⊗H∗
(c)(X ,M )⊗n. (8)

Here, in the mixed Hodge context, V is regarded as a pure Hodge structure of type (0,0).

In particular, by associating to a representation its character char(−), we can view
the (hyper)cohomology groups of M⊠n and V ⊗M⊠n as Σn-characters, via

Hk
(c)(X

n,M⊠n),Hk
(c)(X

n,V ⊗M⊠n) ∈ RepC(Σn)
char
↪→ C(Σn),

with RepC(Σn) the Grothendieck group of finite-dimensional complex Σn-representations
and C(Σn) the free abelian group of Z-valued class functions on Σn. For a fixed n, we
define the generating Poincaré polynomial of these characters by

char
(
H∗
(c)(X

n,V ⊗M⊠n)
)

:= ∑
k

char
(
Hk
(c)(X

n,V ⊗M⊠n)
)
· (−z)k ∈C(Σn)⊗Z[z±1].

(9)
The main question addressed in Maxim and Schürmann (2020) deals with the fol-

lowing.

Problem 2.1. Compute the Poincaré polynomial char
(
H∗
(c)(X

n,V ⊗M⊠n)
)

in terms of
invariants of (X ,M ) and V , for M ∈ A(X) and V ∈ RepC(Σn).

2.3. Approach and main results

Our approach (Maxim & Schürmann, 2020) for solving Problem 2.1 consists of
the following key steps:

(1) compute the generating series ∑n≥0 char
(
H∗
(c)(X

n,M⊠n)
)
· tn,
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(2) identify the coefficient of tn, and

(3) twist by the representation V and use the multiplicativity of characters.

After composing with the Frobenius character homomorphism (see Macdonald,
1979, Ch. 1, Sect. 7):

chF : C(Σ)⊗Q :=
⊕

n
C(Σn)⊗Q ≃−→Q[pi, i ≥ 1]

to the graded ring of Q-valued symmetric functions in infinitely many variables xm (m ∈
N), with pi := ∑m xi

m the i-th power sum function, the generating series of Poincaré poly-
nomials of characters, that is, ∑n≥0 char(H∗

(c)(X
n,M⊠n)) · tn, can be regarded as an ele-

ment in the Q-algebra Q[pi, i ≥ 1;z±1][[t]]. The main results of Maxim and Schürmann
(2020) can now be stated as follows:

Theorem 2.2. (a) For M ∈ A(X), the following generating series identity holds in the
Q-algebra Q[pi, i ≥ 1,z±1][[t]]:

∑
n≥0

char
(
H∗
(c)(X

n,M⊠n)
)
· tn = exp

(
∑
r≥1

pr ·P(c)(X ,M )(zr) · tr

r

)
.

(b) For V ∈ RepC(Σn) and M ∈ A(X), the following identity holds in the Q-
algebra Q[pi, i ≥ 1,z±1]:

char(H∗
(c)(X

n,V ⊗M⊠n)) = ∑
λ⊣ n

pλ

zλ

χλ (V ) ·∏
r≥1

(
P(c)(X ;M )(zr)

)kr ,

where, for a partition λ = (k1,k2, · · ·) of n (i.e., ∑r≥1 r · kr = n) corresponding to a con-
jugacy class of an element σ ∈ Σn, we set: zλ := ∏r≥1 rkr · kr!, χλ (V ) := traceσ (V ), and
pλ := ∏r≥1 pkr

r .

2.4. Applications

Various specializations of Theorem 2.2 (and of its Hodge-theoretic analogue) can
be obtained by making special choices of the:

(a) coefficients M ∈ A(X),

(b) variable(s) z (resp., z,y,x in the Hodge-theoretic context),

(c) Frobenius parameters pi (e.g., related to symmetric and alternating powers of
coefficients), and

(d) representation V ∈ RepC(Σn).
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Example 2.3. (Schur functors) If pr = 1 for all r, the effect is to take the Σn-invariant part
in the Künneth formula, i.e., to compute the Betti (or Hodge) numbers of

H∗
(c)(X

n,V ⊗M⊠)Σn ≃ H∗
(c)(S

nX ,SV (M )),

where
SV (M ) :=

(
πn∗(V ⊗M⊠)

)Σn

is the Schur power of M with respect to V ∈ RepC(Σn). These Schur-type objects SV (M )
generalize the symmetric powers SnM and alternating powers CnM of M (introduced in
Maxim et al. (2011) and Maxim and Schürmann (2012), which correspond to the trivial
and sign representations, respectively. For instance,

(1) if M = CX ∈ Db
c(X), then SnCX = CSnX .

(2) if M = IC′
X := ICX [−dimCX ] ∈ Db

c(X), then SnIC′
X = IC′

SnX .

(3) if X is projective and M = OX ∈ Db
coh(X), then SnOX = OSnX .

(4) if V =Vµ is the irreducible representation of Σn corresponding to the partition
µ of n, then SVµ

(IC′
X)

∼= IC′
SnX(Vµ).

Example 2.4. Assume pr = 1 for all r. Then:

(1) If M = CX ∈ Db
c(X), Theorem 2.2(a) yields formula (1) for P(c), namely,

∑
n≥0

P(c)(S
nX)(z) · tn = exp

(
∑
r≥1

P(c)(X)(zr) · tr

r

)
.

(2) If M = IC′
X , Theorem 2.2(a) yields an intersection cohomology version of

Macdonald’s formula.

(3) If X is projective, M =OX and z= 1, Theorem 2.2(a) yields formula (3) for χa.

(4) If M =QH
X ∈DbMHM(X), the Hodge-theoretic counterpart of Theorem 2.2(a)

yields Cheah’s formula (5) for hp,q,k
(c) (SnX).

(5) If M = IC′H
X ∈ DbMHM(X), the Hodge-theoretic counterpart of Theorem

2.2(a) yields an intersection cohomology version of Cheah’s formula.

(6) If X is projective, M = IC′H
X , x = z = 1 and y =−1, the Hodge-theoretic coun-

terpart of Theorem 2.2(a) yields an intersection cohomology version of Hirzebruch-
Zagier’s formula, i.e., for the Goresky-MacPherson signature of symmetric prod-
ucts. If, moreover, X is an orbifold, this gives Hirzebruch-Zagier’s formula in the
complex algebraic case.
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Example 2.5. (Macdonald formula for partial quotients) Let V = IndΣn
K (triv) be the repre-

sentation induced from the trivial representation of a subgroup K of Σn, and let M =CX ∈
Db

c(X). Then Theorem 2.2(b) specializes for pr = 1 (for all r) to Macdonald’s Poincaré
polynomial formula for the partial quotient Xn/K, namely:

P(c)(X
n/K)(z) = ∑

λ⊣ n

1
zλ

χλ (IndΣn
K (triv)) ·∏

r≥1

(
P(c)(X)(zr)

)kr .

Remark 2.6. For X projective, one can recover some of the Euler characteristic-type
results mentioned above by taking the degree of similar (equivariant) characteristic class
formulae obtained in Maxim and Schürmann (2018).

2.5. Sketch of proof of Theorem 2.2

The proof of Theorem 2.2 is reduced via an equivariant Künneth formula to a
generating series identity for abstract characters of tensor powers V ⊗n of an element V
in a suitable symmetric monoidal category (A,⊗). Specifically, let AΣn be the additive
category of the Σn-equivariant objects in A, as in Maxim and Schürmann (2012, Sect. 4),
with corresponding Grothendieck group K0(AΣn). Then

[V ⊗n] ∈ K0(AΣn)≃ K0(A)⊗Z RepQ(Σn),

with RepQ(Σn) being the ring of rational representations of Σn (e.g., see Maxim & Schürm-
ann, 2012, Eqn. (45) for the above decomposition). Let cln be the characteristic class
homomorphism defined by the composition:

K0(AΣn)≃ K0(A)⊗Z RepQ(Σn)
id⊗char−−−−→ K0(A)⊗ZC(Σn)

id⊗chF
↪→ K0(A)⊗ZQ[pi, i ≥ 1].

Then one has the following result (see Maxim & Schürmann, 2020, Theorems 1.4 and
1.5).

Theorem 2.7. (a) For any V ∈ A, the following generating series identity holds:

∑
n≥0

cln([V ⊗n]) · tn = exp

(
∑
r≥1

ψr([V ])⊗ pr ·
tr

r

)
∈ (K0(A)⊗Q[pi, i ≥ 1]) [[t]], (10)

with ψr the r-th Adams operation of the pre-lambda ring K0(A).

(b) For V ∈ RepQ(Σn), the following holds in K0(A)⊗Q[pi, i ≥ 1]:

cln(V ⊗V ⊗n) = ∑
λ⊣ n

pλ

zλ

χλ (V )⊗∏
r≥1

(ψr([V ]))kr . (11)

Remark 2.8. The Adams operation ψr of formula (10) is given by

ψr([V ]) := trr([V
⊗r])(σr),

where σr ∈ Σr is a cycle of length r, and trr is the composition:

trr : K0(AΣr)≃ K0(A)⊗Z RepQ(Σr)
id⊗char−−−−→ K0(A)⊗ZC(Σr).
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Example 2.9. The Grothendieck ring K0(A) of the additive category A has the structure of
a pre-lambda ring, i.e., it comes endowed with a family of mappings σn : K0(A)→ K0(A)
for n ∈ N0 with σ0(r) = 1 and σ1(r) = r for all r ∈ K0(A), satisfying

σn(r+ r′) =
n

∑
i=0

σi(r) ·σn−i(r′) for all n ∈ N0 and r,r′ ∈ K0(A).

Then, by setting pr = 1 for all r, formula (10) specializes to the well-known pre-lambda
ring identity (e.g., see Knutson, 1973; or Macdonald, 1979, Ch. 1, Rem. 2.15):

σt ([V ]) = 1+ ∑
n≥1

[(V ⊗n)Σn] · tn = exp

(
∑
r≥1

ψr([V ]) · tr

r

)
∈ K0(A)⊗ZQ[[t]] , (12)

relating the pre-lambda structure to the corresponding Adams operations.

Example 2.10. If A = VectQ is the category of finite dimensional rational vector spaces,
then for V = Q the unit of A with respect to the tensor product, the above formula (11)
specializes to the following well-known description of the homomorphism

cln : RepQ(Σn)→Q[pi, i ≥ 1]

given by Macdonald (1979, Sect. 7, 7.2):

cln(V ) = ∑
λ=(k1,k2,···)⊢n

χλ (V )

zλ

·∏
r≥1

pkr
r .

The proof of Theorem 2.7 relies on Macdonald’s calculus of symmetric func-
tions (see Macdonald, 1979). For a plethysm interpretation, see Maxim and Schürmann
(2012, Theorem 1.9). Theorem 2.2 is then obtained from Theorem 2.7 by letting V =
H∗
(c)(X ,M ) (or V = Gr∗FGrW

∗ H∗
(c)(X ,M )C if M ∈ DbMHM(X)), and A the abelian ten-

sor category of finite dimensional (multi-)graded C-vector spaces.

2.6. Other applications

The abstract character formula of Theorem 2.7 can also be used to derive equivari-
ant versions of Theorem 2.2 for varieties X with additional symmetries, e.g.,

(1) an algebraic action on X of a finite group G,

(2) an algebraic automorphism g : X → X of finite order,

(3) a proper algebraic endomorphism g : X → X ,

and equivariant coefficients. This is done by replacing the category A by a suitable cat-
egory AG of G-equivariant objects in A, as in Maxim and Schürmann (2012), and by the

15
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category End(A) of endomorphisms of objects in A, respectively.

For example, if M = CX and g : X → X is a (proper) algebraic endomorphism of
X , one gets an equivariant version of Macdonald’s generating series formula, expressed
in terms of the graded Lefschetz Zeta function. Specifically, one has the following (see
Maxim & Schürmann, 2020, Theorem 1.7).

Theorem 2.11. The following identity holds in C[z][[t]]:

∑
n≥0

Pg
(c)(S

nX)(z) · tn = exp

(
∑
r≥1

Pgr

(c)(X)(zr) · tr

r

)
, (13)

where
Pg
(c)(X)(z) := ∑

k
traceg(Hk

(c)(X ;C)) · (−z)k.

(A similar formula holds for the equivariant mixed Hodge polynomials.)

Formula (13) specializes for z = 1 to the usual Lefschetz zeta function of the
(proper) endomorphism g : X → X . Moreover, for g = idX the identity of X , formula
(13), reduces to Macdonald’s generating series formula (1), for the Poincaré polynomials
and Betti numbers of the symmetric products of X .
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