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Abstract 

It is well-known that material technology is considered as one of the scientific fields 

attracting a lot of attention from scientists. Recently, graphene, a perfect two-dimensional 

structure, has attracted a large amount of interest from researchers due to its unique 

properties and possible applications in a variety of technological fields. The dispersion 

relations in graphene demonstrate that this material can be used to create plasmonic 

devices with potentially more features and less energy consumption than recent 

semiconductors. This paper calculates the dispersion relations in a bilayer graphene 

structure at finite temperatures using the random-phase approximation. The numerical 

results show that as temperature increases from zero, the plasmon frequency decreases 

slightly near the Dirac points and then increases noticeably. In large wave vector regions, 

the plasmon frequency behaves as an increasing function of temperature. The contribution 

of carrier density to plasmon frequency in the bilayer graphene system diminishes when 

temperature effects are taken into account. We observed that temperature significantly 

affects the dispersion relations in bilayer graphene systems; therefore, this factor should 

not be neglected in efforts to improve models or in comparisons with experimental results. 

Keywords: Bilayer graphene; Dispersion relations; Dynamical dielectric function; Finite 

temperature; Random-phase approximation. 
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1.  INTRODUCTION 

Graphene, a perfect two-dimensional structure consisting of one layer of carbon 

atoms arranged in a honeycomb lattice, has recently attracted a large amount of 

attention from scientists due to its unique electronic and optical properties as well as for 

its technological applications compared to previous materials. Theoretical studies on 

monolayer graphene (MLG) show that quasi-particles in MLG behave as massless 

fermions with linear low-energy dispersion and a zero-band gap. This behavior differs 

completely from the parabolic dispersion and finite gap in conventional two-

dimensional electron gas (2DEG) systems. Due to these differences, graphene 

applications exist in a variety of technological fields, such as photonics, optoelectronics, 

energy storage, and other areas (Alonzo-González et al., 2017; Das Sarma et al., 2010; 

Das Sarma et al., 2011; Jiang et al., 2017; Ju et al., 2011; Lundeberg et al., 2017; Ni et 

al., 2016; Ni et al., 2018; Sunku et al., 2018). 

Bilayer graphene (BLG), a structure consisting of two parallel MLG sheets at 

sufficiently small separation, is viewed as an ideal two-dimensional system. The strong 

coupling between electrons in the two MLG sheets in BLG makes quasi-particles in 

BLG systems become chiral massive fermions with parabolic dispersion in the low-

energy limit. The difference in the characteristics of the quasi-particles leads to 

differences in the polarizability, dynamical dielectric function, screening properties, and 

dispersion relations of BLG systems compared to MLG and ordinary 2DEG structures 

(Das Sarma et al., 2010; Das Sarma et al., 2011; Sensarma et al., 2010). 

Collective excitations in materials have been studied for a long time and have 

been applied to create plasmonic devices. The dispersion relations in MLG at zero and 

finite temperature have been investigated with many interesting suggestions for 

applications in a variety of technological fields (Hwang & Das Sarma, 2007; Politano et 

al., 2016; Politano et al., 2017; Ramezanali et al., 2009; Yan et al., 2012). Several 

studies of collective excitations in multilayer graphene structures have been published 

(Dong & Nguyen, 2019; Wachsmuth et al., 2014; Zhu et al., 2013). Wang & 

Chakraborty (2007) investigated Coulomb screening and plasmon modes in undoped 

graphene systems and demonstrated some interesting results. According to their paper, 

one weakly damped plasmon mode is found in these systems in the case of finite 

temperature. In 2010, the screening and collective excitations in doped BLG at zero 

temperature were studied and published by Sensarma and his co-workers for the first 

time (Sensarma et al., 2010). The calculations for collective excitations in layered 

structures consisting of BLG have been studied intensively (Nguyen et al., 2019a, 

2019c, 2021; Nguyen & Dong, 2018). However, recent publications have neglected the 

effects of temperature, although previous papers have observed significant temperature 

effects on the plasmon properties of layered structures (Patel, 2015; Nguyen et al., 

2019b; Ramezanali et al., 2009; Dinh & Nguyen, 2013; Vazifehshenas et al., 2010). To 

our knowledge, no calculations have been performed to date for the plasmon properties 

of BLG at finite temperature. This paper provides calculations for the dispersion 

relations in BLG taking into account temperature effects to improve the model and the 

agreement between theoretical and experimental results. As observed in previous 
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publications, the random-phase approximation leads to good results for high-carrier 

density systems such as graphene (Das Sarma et al., 2010; Hwang & Das Sarma, 2007, 

2009; Sensarma et al., 2010), therefore this approximation is used to calculate the 

dynamical dielectric function of the BLG structure in this paper. 

2.  THEORETICAL APPROACH 

We investigate the dispersion relations in a BLG system on the dielectric 

substrate 𝑆𝑖𝑂2  (with 𝜅𝑆𝑖𝑂2
= 3.8). Temperature effects are taken into account in all 

calculations. Note that BLG systems considered in this paper have parabolic low-energy 

dispersion. In this approximation, the Hamiltonian of BLG has the form (Das Sarma et 

al., 2010; Sensarma et al., 2010): 

𝐻̂2,𝑥𝑦 = −
1

2𝑚
(

0 (𝑘𝑥 − 𝑖𝑘𝑦)
2

(𝑘𝑥 + 𝑖𝑘𝑦)
2

0
) (1) 

where 𝑚 = 0.033𝑚0  is the effective mass, and 𝑚0  is the vacuum mass of 

electrons. For the Hamiltonian in Equation (1), the energy and the wave function are 

𝐸 = ±
𝑘2

2𝑚
,  𝜓± =

1

√2
(

0
∓𝑒𝑖2𝜑) 𝑒𝑖𝑘⃗ 𝑟 . (2) 

In Equation (2), the upper and lower signs correspond to the conduction and 

valence bands, respectively, and 𝜑 is the argument of the wave vector in the graphene 

plane 𝑘⃗ = (𝑘𝑥, 𝑘𝑦) = 𝑘(𝑐𝑜𝑠 𝜑 , 𝑠𝑖𝑛 𝜑). 

It has been proven that the dispersion relations of the system can be determined 

from the zeroes of the temperature-dependent dynamical dielectric function (Nguyen & 

Nguyen, 2018; Nguyen et al., 2019a; Nguyen & Dong, 2019; Dinh & Nguyen, 2013; 

Vazifehshenas et al., 2010; Zhu et al., 2013): 

𝜀(𝑞, 𝜔𝑝 − 𝑖𝛾, 𝑇) = 0. (3) 

Here 𝜔𝑝 is the plasmon frequency at a given momentum 𝑞, and 𝛾 is the damping 

rate of the respective plasma oscillations. In the case of weak damping, the solutions of 

Equation (3) can be found approximately from the zeroes of the real part of the 

temperature-dependent dynamical dielectric function (Nguyen & Nguyen, 2018; 

Nguyen et al., 2019a; Nguyen & Dong, 2019; Dinh & Nguyen, 2013; Vazifehshenas et 

al., 2010; Zhu et al., 2013) 

𝑅𝑒 𝜀 (𝑞, 𝜔𝑝, 𝑇) = 0. (4) 

Within the random-phase approximation, the temperature-dependent dynamical 

dielectric function of the BLG system is 

𝜀(𝑞, 𝜔, 𝑇) = 1 − 𝑣(𝑞)𝛱(𝑞, 𝜔, 𝑇) (5) 
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where 𝑣(𝑞) = 2𝜋𝑒2/(𝜅𝑞) is the Coulomb bare interaction in momentum space 

and 𝜅  is the average permittivity of the substrate (𝑆𝑖𝑂2 ,  𝜅𝑆𝑖𝑂2
= 3.8) and the air 

(𝜅𝑎𝑖𝑟 = 1.0). 𝛱(𝑞,𝜔, 𝑇) is the polarizability function of BLG at finite temperature (Das 

Sarma et al., 2010; Das Sarma et al., 2011; Sensarma et al., 2010): 

𝛱(𝑞,𝜔, 𝑇) = 𝑔 ∑ |𝑔
𝑘⃗ 
𝜆,𝜆′(𝑞 )|

2 𝑓(𝐸
𝑘⃗⃗ +𝑞⃗⃗ 
𝜆′ )−𝑓(𝐸

𝑘⃗⃗ 
𝜆)

𝜔+𝐸
𝑘⃗⃗ +𝑞⃗⃗ 
𝜆′ −𝐸

𝑘⃗⃗ 
𝜆+𝑖𝜂𝜆,𝜆′,𝑘⃗   (6) 

Here |𝑔
𝑘⃗ 
𝜆,𝜆′(𝑞 )|

2

= [1 + 𝜆𝜆′ 𝑐𝑜𝑠 2 (𝜃𝑘⃗ − 𝜃𝑘⃗ +𝑞⃗ )] /2 is the overlap wave function, 

𝑔 = 4 denotes the degeneracy (spin and valley) factor, and 𝜆 = ±1 corresponds to the 

conduction and valence bands, respectively. The Fermi-Dirac contribution, 𝑓(𝑥) , is 

formed as 

𝑓(𝑥) = (𝑒
𝑥−𝜇

𝑘𝐵𝑇 + 1)
−1

. (7) 

In Equation (7), 𝜇 is the chemical potential. Detailed calculations have proven 

that in BLG systems 𝜇 = 𝐸𝐹 , which is the Fermi energy of BLG (Das Sarma et al., 

2010; Das Sarma et al., 2011; Lv & Wan, 2010; Sensarma et al., 2010). 

The numerical solutions for Equation (4) with the temperature-dependent 

dynamical dielectric function in Equation (5) and the polarizability in Equation (6) show 

the dispersion relations for BLG systems. 

3.  NUMERICAL RESULTS AND DISCUSSION 

In this section, we present numerical calculations for dispersion relations in BLG 

systems taking into account temperature effects. Note that 𝐸𝐹 , 𝑘𝐹 , and 𝑇𝐹  denote the 

Fermi energy, the Fermi wave vector, and the Fermi temperature of the structure, 

respectively. At the fixed carrier density 𝑛 = 1012𝑐𝑚−2, the Fermi wave vector of BLG 

is 𝑘𝐹 = √𝑛𝜋 ≈ 1.77 × 106 𝑐𝑚−2, corresponding to a Fermi energy of 𝐸𝐹 ≈ 36.3𝑚𝑒𝑉 

and a Fermi temperature of 𝑇𝐹 = 𝐸𝐹/𝑘𝐵 ≈ 421𝐾. 

Figure 1 presents dispersion relations in a BLG system with carrier density 

𝑛 = 1012𝑐𝑚−2  plotted for 𝑇 = 0 , 𝑇 = 0.1𝑇𝐹 , 𝑇 = 0.2𝑇𝐹 , and 𝑇 = 0.5𝑇𝐹 . Figure 1a 

shows that the plasmon frequency decreases slightly with temperature in the small wave 

vector region (as seen in the inset), near the Dirac points and increases substantially 

with temperature in the larger wave vector region. The reason is that at higher 

temperature, electrons with large kinetic energy can be more easily excited, leading to 

larger-energy collective excitations. Similar behavior has been found in previous 

calculations of the dispersion relations in MLG structures (Nguyen et al., 2019b; 

Nguyen et al., 2020; Dinh & Nguyen, 2013; Vazifehshenas et al., 2010). In the long-

wavelength region, the branches for 𝑇 = 0 (thick solid line) and 𝑇 = 0.2𝑇𝐹 (thin solid 

line) appear identical and only diverge in the larger wave vector region (𝑞 ≥ 0.3𝑘𝐹). As 

temperature increases noticeably, the plasmon frequency strongly increases, as seen 
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from Figure 1b. The plasmon branches separate at a quite small wave vector, about 

0.05𝑘𝐹. The difference in plasmon frequency at a given wave vector between the two 

cases of finite temperature (𝑇 = 0.1𝑇𝐹 and 𝑇 = 0.5𝑇𝐹) is approximately 20% at the wave 

vector 𝑞 ≈ 0.5𝑘𝐹. For comparison, we plot in Figure 1c and 1d the dispersion relations 

in MLG for the same parameters. The figures show that, in the small wave vector 

regions, temperature affects the collective excitations in MLG more strongly than in 

BLG systems. By contrast, in the larger wave vector regions, the dispersion relations 

increase more strongly in BLG than in MLG structures. Similar to other layered 

structures (Nguyen et al., 2019b; Ramezanali et al., 2009; Dinh & Nguyen, 2013; 

Vazifehshenas et al., 2010), the effects of temperature on the plasmon modes in BLG 

systems are significant and should not be neglected, as found clearly in the large wave 

vector regions. 

 

(a) 
 

(b) 

 

(c) 

 

(d) 

Figure 1. The dispersion relations in BLG (a), (b) and MLG (c), (d) systems with 

carrier density 𝒏 = 𝟏𝟎𝟏𝟐𝒄𝒎−𝟐 for temperatures of 𝑻 = 𝟎, 𝑻 = 𝟎. 𝟏𝑻𝑭, 𝑻 = 𝟎. 𝟐𝑻𝑭, 

and 𝑻 = 𝟎. 𝟓𝑻𝑭 

Note: The shaded regions denote the single-particle excitation (SPE) areas at zero temperature. 

To study the effects of temperature on plasmon properties in detail Figure 2 

plots the plasmon frequency in BLG and MLG systems as a function of temperature for 

several wave vectors and for carrier densities 𝑛 = 1012𝑐𝑚−2 (a), (c) and 𝑛 = 1013𝑐𝑚−2 
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(b). As seen in Figure 2a for 𝑞 = 0.1𝑘𝐹  and 𝑞 = 0.3𝑘𝐹 , the plasmon frequency 

decreases slightly as the temperature increases slightly from zero, then increases 

significantly with temperature at larger temperatures. In the case of a larger wave vector 
(𝑞 = 0.4𝑘𝐹),  the plasmon frequency behaves as an increasing function of the 

investigated temperature. This result shows good agreement with that demonstrated in 

Figure 1. Similar behavior for collective excitations in MLG and structures consisting of 

MLG has been obtained in previous papers (Nguyen et al., 2019b; Dinh & Nguyen, 

2013) and is seen in Figure 2c. The difference is that the decrease in the plasmon 

frequency in the small wave vector region of MLG systems is more noticeable than that 

in the other case. The pattern of plasmon curves for 𝑛 = 1012𝑐𝑚−2 (Figure 2a) differs 

only slightly compared to that of 𝑛 = 1013𝑐𝑚−2  (Figure 2b), although the carrier 

density is increased by ten times. However, the decrease in the plasmon frequency in the 

small wave vector region is extremely difficult to recognize. In other words, the 

increase in doping density in the BLG system reduces the effects of temperature on 

dispersion relations in BLG systems. 

 

(a) 

 

(b) 

 

(c) 

Figure 2. Plasmon frequency in BLG (a), (b) and MLG (c) systems as a function of 

temperature for wave vectors 𝒒 = 𝟎. 𝟏𝒌𝑭, 𝒒 = 𝟎. 𝟑𝒌𝑭, and 𝒒 = 𝟎. 𝟒𝒌𝑭 plotted for 

carrier densities 𝒏 = 𝟏𝟎𝟏𝟐𝒄𝒎−𝟐 (a), (c) and 𝒏 = 𝟏𝟎𝟏𝟑𝒄𝒎−𝟐 (b) 

Finally, we consider the effects of doping density on plasmon properties in BLG 

systems at finite temperature in comparison with the zero-temperature case. In Figure 3, 
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we present the collective excitations in a BLG structure at 𝑇 = 0.2𝑇𝐹  and 𝑇 = 0 for 

doping densities 𝑛 = 1012𝑐𝑚−2  and 𝑛 = 1013𝑐𝑚−2 . As seen from the figures, 

increased doping density strongly decreases the plasmon energy in both cases. This 

behavior comes from the dependence of the interaction parameter (𝑟𝑠) on the doping 

carrier density. In the BLG system, 𝑟𝑠~𝑛−1/2  decreases with the increase in doping 

density. Therefore, the increase in doping density leads to a decrease in plasmonic 

energy (Das Sarma et al., 2010; Das Sarma et al., 2011; Hwang & Das Sarma, 2007; 

Sensarma et al., 2010). In the case of finite temperature, the plasmon frequency depends 

on the carrier density more weakly than in the zero-temperature case. Thus, taking 

temperature effects into account in the calculations diminishes the effect of doping 

density on plasmon properties in BLG systems. 

 

(a) 

 

(b) 

Figure 3. Dispersion relations in a BLG system at temperature 𝑻 = 𝟎. 𝟐𝑻𝑭 and 

𝑻 = 𝟎 with doping densities 𝒏 = 𝟏𝟎𝟏𝟐𝒄𝒎−𝟐 and 𝒏 = 𝟏𝟎𝟏𝟑𝒄𝒎−𝟐 

Note: Dash-dotted lines show the SPE boundary at zero temperature. 

4.  CONCLUSION 

In summary, we have calculated the dispersion relations in BLG structures using 

the random-phase approximation at finite temperature. Numerical results show that the 

dependence of plasmon frequency on temperature in the small wave vector region is 

significantly different from that in the large wave vector region. Plasmon frequency 

noticeably increases with temperature in the latter, whereas it decreases slightly as the 

temperature increases from zero in the efficiently small wave vector region. Moreover, 

increased carrier density in BLG systems substantially decreases plasmon frequency, 

and the dispersion relations depend more weakly on increasing temperature. We observe 

that the collective excitations in BLG systems, when temperature effects are taken into 

account, are remarkably different from those at zero temperature, as found in previous 

publications. Our results may be useful in improving models and in helping material 

scientists develop technological applications for graphene. 
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