NONLINEAR CHARACTERISTICS OF SQUARE SOLID-CORE PHOTONIC CRYSTAL FIBERS WITH VARIOUS LATTICE PARAMETERS IN THE CLADDING
DOI:
https://doi.org/10.37569/DalatUniversity.13.1.1017(2023)Keywords:
Attenuation, Chromatic dispersion, Different air hole diameters, Nonlinear coefficient, Square photonic crystal fiber.Abstract
Nonlinear characteristics of fused silica, solid-core photonic crystal fibers (PCFs) with a square array of air holes are studied numerically. We present a novel design that emphasizes the difference in air hole diameters in the photonic cladding. These PCFs have the advantages of flat dispersion, high nonlinearity, and low attenuation. Based on simulation results, three optimal structures, denoted #F1, #F2, and #F3, having anomalous and all-normal dispersions in the near-infrared range are selected to investigate characteristic properties at the pump wavelength. Such PCFs open up many possibilities for nonlinear optical applications, especially supercontinuum generation.
References
Agrawal, G. (2013). Highly nonlinear fibers. In Nonlinear fiber optics (5th ed.) (pp. 457-496). Elsevier. https://doi.org/10.1016/B978-0-12-397023-7.00011-5
Arif, M. F. H., Biddut, M. J. H., Babu, M. S. I., Rahman, H. M. M., Rahman, M. M., Jahan, B., Chaity, M. S., & Khaled, S. M. (2017). Photonic crystal fiber based sensor for detecting binary liquid mixture. Optics and Photonics Journal, 7(11), 221-234. https://doi.org/10.4236/opj.2017.711020
Birks, T. A., Knight, J. C., & Russell, P. St. J. (1997). Endlessly single-mode photonic crystal fiber. Optics Letters, 22(13), 961-963. https://doi.org/10.1364/OL.22.000961
Chu, V. L., Anuszkiewicz, A., Ramaniuk, A., Kasztelanic, R., Dinh, X. K., Cao, L. V., Trippenbach, M., & Buczyński, R. (2017). Supercontinuum generation in photonic crystal fibres with core filled with toluene. Journal of Optics, 19(12), 125604. https://doi.org/10.1088/2040-8986/aa96bc
Chu, V. L., Hoang, V. T., Cao, L. V., Borzycki, K., Dinh, X. K., Tran, Q. V., Trippenbach, M., Buczyński, R., & Pniewski, J. (2019). Optimization of optical properties of photonic crystal fibers infiltrated with chloroform for supercontinuum generation. Laser Physics, 29(7), 075107. https://doi.org/10.1088/1555-6611/ab2115
Chu, V. L., Hoang, V. T., Cao, L. V., Borzycki, K., Dinh, X. K., Tran, Q. V., Trippenbach, M., Buczyński, R., & Pniewski, J. (2020). Supercontinuum generation in photonic crystal fibers infiltrated with nitrobenzene. Laser Physics, 30(3), 035105. https://doi.org/10.1088/1555-6611/ab6f09
Dhara, P., & Singh, V. K. (2021). Investigation of rectangular solid-core photonic crystal fiber as temperature sensor. Microsystem Technologies, 27, 127-132. https://doi.org/10.1007/s00542-020-04927-1
Dinh, X. K., Chu, V. L., Cao, L. V., Ho, D. Q., Mai, V. L., Trippenbach, M., & Buczyński, R. (2017a). Influence of temperature on dispersion properties of photonic crystal fibers infiltrated with water. Optical and Quantum Electronics, 49(2), 87. https://doi.org/10.1007/s11082-017-0929-3
Dinh, X. K., Chu, V. L., Ho, D. Q., Luu, V. X., Trippenbach, M., & Buczynski, R. (2017b). Dispersion characteristics of a suspended-core optical fiber infiltrated with water. Applied Optics, 56(4), 1012-1019. https://doi.org/10.1364/AO.56.001012
Gundu, K. M., Kolesik, M., Moloney, J. V., & Lee, K. S. (2006). Ultra-flattened-dispersion selectively liquid-filled photonic crystal fibers. Optics Express, 14(15), 6870-6878. https://doi.org/10.1364/OE.14.006870
Guo, Y., Yuan, J., Wang, K., Wang, H., Cheng, Y., Zhou, X., Yan, B., Sang, X., & Yu, C. (2021). Generation of supercontinuum and frequency comb in a nitrobenzene-core photonic crystal fiber with all-normal dispersion profile. Optics Communications, 481(4), 126555. https://doi.org/10.1016/j.optcom.2020.126555
Ho, Q. Q., & Chu, V. L. (2021). Spectrum broadening of supercontinuum generation by fill styrene in core of photonic crystal fibers. Indian Journal of Pure & Applied Physics, 59, 522-527.
Hoang, V. T., Kasztelanic, R., Filipkowski, A., Stępniewski, G., Pysz, D., Klimczak, M., Ertman, S., Cao, L. V., Woliński, T. R., Trippenbach, M., Dinh, X. K., Śmietana, M., & Buczyński, R. (2019). Supercontinuum generation in an all-normal dispersion large core photonic crystal fiber infiltrated with carbon tetrachloride. Optical Materials Express, 9(5), 2264-2278. https://doi.org/10.1364/OME.9.002264
Hoang, V. T., Siwicki, B., Franczyk, M., Stępniewski, G., Le, V. H., Cao, L. V., Klimczak, M., & Buczyński, R. (2018). Broadband low-dispersion low-nonlinearity photonic crystal fiber dedicated to near-infrared high-power femtosecond pulse delivery. Optical Fiber Technology, 42, 119-125. https://doi.org/10.1016/j.yofte.2018.03.003
Jin, W., Ju, J., Ho, H. L., Hoo, Y. L., & Zhang, A. (2013). Photonic crystal fibers, devices, and applications. Frontiers of Optoelectronics, 6(1), 3-24. https://doi.org/10.1007/s12200-012-0301-y
Kedenburg, S., Vieweg, M., Gissibl, T., & Giessen, H. (2012). Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region. Optical Materials Express, 2(11), 1588-1611. https://doi.org/10.1364/OME.2.001588
Knight, J. C. (2003). Photonic crystal fibres. Nature, 424(6950), 847-851. https://doi.org/10.1038/nature01940
Knight, J. C., Birks, T. A., Russell, P. St. J., & Atkin, D. M. (1996). All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters, 21(19), 1547-1549. https://doi.org/10.1364/OL.21.001547
Larsen, T. T, Bjarklev, A., Hermann, D. S., & Broeng, J. (2003). Optical devices based on liquid crystal photonic bandgap fibres. Optics Express, 11(20), 2589-2596. https://doi.org/10.1364/OE.11.002589
Le, T. B. T., Nguyen, T. T., Vo, T. M. N., Le, C. T., Le, V. M., Cao, L. V., Dinh, X. K., & Chu, V. L. (2020). Analysis of dispersion characteristics of solid-core PCFs with different types of lattice in the claddings, infiltrated with ethanol. Photonics Letters of Poland, 12(4), 106-108. https://doi.org/10.4302/plp.v12i4.1054
Le, V. H., Cao, L. V., Nguyen, T. H., Nguyen, M. A., Buczyński, R., & Kasztelanic, R. (2018). Application of ethanol infiltration for ultra-flattened normal dispersion in fused silica photonic crystal fibers. Laser Physics, 28(11), 115106. https://doi.org/10.1088/1555-6611/aad93a
Nguyen, T. T., Chu, T. G. T., Le, V. M., Tran, Q. V., Doan, Q. K, Dinh, X. K., Chu, V. L., & Le, T. B. T. (2020). Numerical analysis of the characteristics of glass photonic crystal fibers infiltrated with alcoholic liquids. Communications in Physics, 30(3), 209-220. https://doi.org/10.15625/0868-3166/30/3/14815
Pandey, S. K., Prajapati, Y. K., & Maurya, J. B. (2020). Design of simple circular photonic crystal fiber having high negative dispersion and ultra-low confinement loss. Results in Optics, 1, 100024. https://doi.org/10.1016/j.rio.2020.100024
Pniewski, J., Stefaniuk, T., Le, V. H., Cao, L. V., Chu, V. L., Kasztelanic, R., Stępniewski, G., Ramaniuk, A., Trippenbach, M., & Buczyński, R. (2016). Dispersion engineering in nonlinear soft glass photonic crystal fibers infiltrated with liquids. Applied Optics, 55(19), 5033-5040. https://doi.org/10.1364/AO.55.005033
Rostami, A., & Soofi, H. (2011). Correspondence between effective mode area and dispersion variations in defected core photonic crystal fibers. Journal of Lightwave Technology, 29(2), 234-241. https://doi.org/10.1109/JLT.2010.2100808
Russell, P. St. J. (2003). Photonic crystal fibers. Science, 299(5605), 358-362. https://doi.org/10.1126/science.1079280
Saitoh, K., & Koshiba, M., (2005). Numerical modeling of photonic crystal fibers. Journal of Lightwave Technology, 23(11), 3580-3590. https://doi.org/10.1109/JLT.2005.855855
Saitoh, K., Koshiba, M., Hasegawa, T., & Sasaoka, E. (2003). Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion. Optics Express, 11(8), 843-852. https://doi.org/10.1364/OE.11.000843
Stepniewski, G., Kasztelanic, R., Pysz, D., Stepien, R., Klimczak, M., & Buczynski, R. (2016). Temperature sensitivity of chromatic dispersion in nonlinear silica and heavy metal oxide glass photonic crystal fibers. Optical Materials Express, 6(8), 2689-2703. https://doi.org/10.1364/OME.6.002689
Wang, Y., Li, S., Wu, J., Yu, P., & Li, Z. (2020). Design of an ultrabroadband and compact filter based on square-lattice photonic crystal fiber with two large gold-coated air holes. Photonics and Nanostructures-Fundamentals and Applications, 41, 100816. https://doi.org/10.1016/j.photonics.2020.100816
Weirich, J., Lægsgaard, J., Wei, L., Alkeskjold, T. T., Wu, T. X., Wu, S-T., & Bjarklev, A. O. (2010). Liquid crystal parameter analysis for tunable photonic bandgap fiber devices. Optics Express, 18(5), 4074-4087. https://doi.org/10.1364/OE.18.004074
Zhang, H., Chang, S., Yuan, J., & Huang, D. (2010). Supercontinuum generation in chloroform-filled photonic crystal fibers. Optik, 121(9), 783-787. https://doi.org/10.1016/j.ijleo.2008.09.026
Downloads
Published
Volume and Issues
Section
Copyright & License
Copyright (c) 2022 Le Tran Bao Tran, Dang Van Trong, Chu Van Lanh, Nguyen Thi Hong Phuong, Trang Nguyen Minh Hang, Hoang Trong Duc, Nguyen Thi Thuy

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.