• Le Tran Bao Tran Vinh University
  • Dang Van Trong Vinh University
  • Chu Van Lanh Vinh University
  • Nguyen Thi Hong Phuong Nguyen Chi Thanh High School
  • Trang Nguyen Minh Hang IGC Tay Ninh School
  • Hoang Trong Duc University of Education, Hue University
  • Nguyen Thi Thuy University of Education, Hue University



Attenuation, Chromatic dispersion, Different air hole diameters, Nonlinear coefficient, Square photonic crystal fiber.


Nonlinear characteristics of fused silica, solid-core photonic crystal fibers (PCFs) with a square array of air holes are studied numerically. We present a novel design that emphasizes the difference in air hole diameters in the photonic cladding. These PCFs have the advantages of flat dispersion, high nonlinearity, and low attenuation. Based on simulation results, three optimal structures, denoted #F1, #F2, and #F3, having anomalous and all-normal dispersions in the near-infrared range are selected to investigate characteristic properties at the pump wavelength. Such PCFs open up many possibilities for nonlinear optical applications, especially supercontinuum generation.


Metrics Loading ...


Agrawal, G. (2013). Highly nonlinear fibers. In Nonlinear fiber optics (5th ed.) (pp. 457-496). Elsevier.

Arif, M. F. H., Biddut, M. J. H., Babu, M. S. I., Rahman, H. M. M., Rahman, M. M., Jahan, B., Chaity, M. S., & Khaled, S. M. (2017). Photonic crystal fiber based sensor for detecting binary liquid mixture. Optics and Photonics Journal, 7(11), 221-234.

Birks, T. A., Knight, J. C., & Russell, P. St. J. (1997). Endlessly single-mode photonic crystal fiber. Optics Letters, 22(13), 961-963.

Chu, V. L., Anuszkiewicz, A., Ramaniuk, A., Kasztelanic, R., Dinh, X. K., Cao, L. V., Trippenbach, M., & Buczyński, R. (2017). Supercontinuum generation in photonic crystal fibres with core filled with toluene. Journal of Optics, 19(12), 125604.

Chu, V. L., Hoang, V. T., Cao, L. V., Borzycki, K., Dinh, X. K., Tran, Q. V., Trippenbach, M., Buczyński, R., & Pniewski, J. (2019). Optimization of optical properties of photonic crystal fibers infiltrated with chloroform for supercontinuum generation. Laser Physics, 29(7), 075107.

Chu, V. L., Hoang, V. T., Cao, L. V., Borzycki, K., Dinh, X. K., Tran, Q. V., Trippenbach, M., Buczyński, R., & Pniewski, J. (2020). Supercontinuum generation in photonic crystal fibers infiltrated with nitrobenzene. Laser Physics, 30(3), 035105.

Dhara, P., & Singh, V. K. (2021). Investigation of rectangular solid-core photonic crystal fiber as temperature sensor. Microsystem Technologies, 27, 127-132.

Dinh, X. K., Chu, V. L., Cao, L. V., Ho, D. Q., Mai, V. L., Trippenbach, M., & Buczyński, R. (2017a). Influence of temperature on dispersion properties of photonic crystal fibers infiltrated with water. Optical and Quantum Electronics, 49(2), 87.

Dinh, X. K., Chu, V. L., Ho, D. Q., Luu, V. X., Trippenbach, M., & Buczynski, R. (2017b). Dispersion characteristics of a suspended-core optical fiber infiltrated with water. Applied Optics, 56(4), 1012-1019.

Gundu, K. M., Kolesik, M., Moloney, J. V., & Lee, K. S. (2006). Ultra-flattened-dispersion selectively liquid-filled photonic crystal fibers. Optics Express, 14(15), 6870-6878.

Guo, Y., Yuan, J., Wang, K., Wang, H., Cheng, Y., Zhou, X., Yan, B., Sang, X., & Yu, C. (2021). Generation of supercontinuum and frequency comb in a nitrobenzene-core photonic crystal fiber with all-normal dispersion profile. Optics Communications, 481(4), 126555.

Ho, Q. Q., & Chu, V. L. (2021). Spectrum broadening of supercontinuum generation by fill styrene in core of photonic crystal fibers. Indian Journal of Pure & Applied Physics, 59, 522-527.

Hoang, V. T., Kasztelanic, R., Filipkowski, A., Stępniewski, G., Pysz, D., Klimczak, M., Ertman, S., Cao, L. V., Woliński, T. R., Trippenbach, M., Dinh, X. K., Śmietana, M., & Buczyński, R. (2019). Supercontinuum generation in an all-normal dispersion large core photonic crystal fiber infiltrated with carbon tetrachloride. Optical Materials Express, 9(5), 2264-2278.

Hoang, V. T., Siwicki, B., Franczyk, M., Stępniewski, G., Le, V. H., Cao, L. V., Klimczak, M., & Buczyński, R. (2018). Broadband low-dispersion low-nonlinearity photonic crystal fiber dedicated to near-infrared high-power femtosecond pulse delivery. Optical Fiber Technology, 42, 119-125.

Jin, W., Ju, J., Ho, H. L., Hoo, Y. L., & Zhang, A. (2013). Photonic crystal fibers, devices, and applications. Frontiers of Optoelectronics, 6(1), 3-24.

Kedenburg, S., Vieweg, M., Gissibl, T., & Giessen, H. (2012). Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region. Optical Materials Express, 2(11), 1588-1611.

Knight, J. C. (2003). Photonic crystal fibres. Nature, 424(6950), 847-851.

Knight, J. C., Birks, T. A., Russell, P. St. J., & Atkin, D. M. (1996). All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters, 21(19), 1547-1549.

Larsen, T. T, Bjarklev, A., Hermann, D. S., & Broeng, J. (2003). Optical devices based on liquid crystal photonic bandgap fibres. Optics Express, 11(20), 2589-2596.

Le, T. B. T., Nguyen, T. T., Vo, T. M. N., Le, C. T., Le, V. M., Cao, L. V., Dinh, X. K., & Chu, V. L. (2020). Analysis of dispersion characteristics of solid-core PCFs with different types of lattice in the claddings, infiltrated with ethanol. Photonics Letters of Poland, 12(4), 106-108.

Le, V. H., Cao, L. V., Nguyen, T. H., Nguyen, M. A., Buczyński, R., & Kasztelanic, R. (2018). Application of ethanol infiltration for ultra-flattened normal dispersion in fused silica photonic crystal fibers. Laser Physics, 28(11), 115106.

Nguyen, T. T., Chu, T. G. T., Le, V. M., Tran, Q. V., Doan, Q. K, Dinh, X. K., Chu, V. L., & Le, T. B. T. (2020). Numerical analysis of the characteristics of glass photonic crystal fibers infiltrated with alcoholic liquids. Communications in Physics, 30(3), 209-220.

Pandey, S. K., Prajapati, Y. K., & Maurya, J. B. (2020). Design of simple circular photonic crystal fiber having high negative dispersion and ultra-low confinement loss. Results in Optics, 1, 100024.

Pniewski, J., Stefaniuk, T., Le, V. H., Cao, L. V., Chu, V. L., Kasztelanic, R., Stępniewski, G., Ramaniuk, A., Trippenbach, M., & Buczyński, R. (2016). Dispersion engineering in nonlinear soft glass photonic crystal fibers infiltrated with liquids. Applied Optics, 55(19), 5033-5040.

Rostami, A., & Soofi, H. (2011). Correspondence between effective mode area and dispersion variations in defected core photonic crystal fibers. Journal of Lightwave Technology, 29(2), 234-241.

Russell, P. St. J. (2003). Photonic crystal fibers. Science, 299(5605), 358-362.

Saitoh, K., & Koshiba, M., (2005). Numerical modeling of photonic crystal fibers. Journal of Lightwave Technology, 23(11), 3580-3590.

Saitoh, K., Koshiba, M., Hasegawa, T., & Sasaoka, E. (2003). Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion. Optics Express, 11(8), 843-852.

Stepniewski, G., Kasztelanic, R., Pysz, D., Stepien, R., Klimczak, M., & Buczynski, R. (2016). Temperature sensitivity of chromatic dispersion in nonlinear silica and heavy metal oxide glass photonic crystal fibers. Optical Materials Express, 6(8), 2689-2703.

Wang, Y., Li, S., Wu, J., Yu, P., & Li, Z. (2020). Design of an ultrabroadband and compact filter based on square-lattice photonic crystal fiber with two large gold-coated air holes. Photonics and Nanostructures-Fundamentals and Applications, 41, 100816.

Weirich, J., Lægsgaard, J., Wei, L., Alkeskjold, T. T., Wu, T. X., Wu, S-T., & Bjarklev, A. O. (2010). Liquid crystal parameter analysis for tunable photonic bandgap fiber devices. Optics Express, 18(5), 4074-4087.

Zhang, H., Chang, S., Yuan, J., & Huang, D. (2010). Supercontinuum generation in chloroform-filled photonic crystal fibers. Optik, 121(9), 783-787.




Volume and Issues


Natural Sciences and Technology

How to Cite

Le, T. B. T., Dang, V. T., Chu, V. L., Nguyen, T. H. P., Trang, N. M. H., Hoang, T. D., & Nguyen, T. T. (2022). NONLINEAR CHARACTERISTICS OF SQUARE SOLID-CORE PHOTONIC CRYSTAL FIBERS WITH VARIOUS LATTICE PARAMETERS IN THE CLADDING. Dalat University Journal of Science, 13(1), 3-15.