INFLUENCE OF STRUCTURAL PARAMETERS ON OPTICAL CHARACTERISTICS OF PHOTONIC CRYSTAL FIBERS WITH CIRCULAR LATTICE
DOI:
https://doi.org/10.37569/DalatUniversity.13.1.1025(2023)Keywords:
Circular photonic crystal fibers, High nonlinearity, Low attenuation, Near-zero ultra-flattened dispersionAbstract
We demonstrate in this study that near-zero, ultra-flattened chromatic dispersion can be achieved over a wide range of wavelengths in photonic crystal fibers (PCFs) by means of slight variations in the geometrical parameters of the cladding. To do that, a new solid-core circular PCF design with various air hole diameters and lattice constants is presented, and the design features are numerically analyzed in detail. After 40 simulations, we determined three structures that possess optimal dispersion with the following lattice constants (Ʌ) and filling factors for the first ring (d1/Ʌ): Ʌ = 0.8 µm, d1/Ʌ = 0.45 for #F1, Ʌ = 0.9 µm, d1/Ʌ = 0.45 for #F2, and Ʌ = 1.0 µm, d1/Ʌ = 0.45 for #F3. High nonlinearity and low attenuation are outstanding features of our model. With these advantages, the proposed fibers are targeted for smooth flat broadband supercontinuum generation for near-infrared applications.
Downloads
References
Agrawal, G. (2013). Nonlinear fiber optics (5th ed.). Elsevier. https://doi.org/10.1016/C2011-0-00045-5
Ahmad, R., Komanec, M., & Zvanovec, S. (2016). Circular lattice photonic crystal fiber for mid-IR supercontinuum generation. IEEE Photonics Technology Letters, 28(23), 2736-2739. https://doi.org/10.1109/lpt.2016.2615657
Ahmad, R., Komanec, M., & Zvanovec, S. (2020). Ultra-wideband mid-infrared supercontinuum generation in liquid-filled circular photonic crystal fiber. Journal of Nanophotonics, 14(2), 026016. https://doi.org/10.1117/1.JNP.14.026016
Amir, A., Revathi, S., Inbathini, S. R., & Chandran, A. (2013). Modeling of circular photonic crystal fiber structure for high non-linearity. International Journal of Advanced Electrical and Electronics Engineering, 2(3), 88-92.
Birks, T. A., Knight, J. C., & Russell, P. St. J. (1997). Endlessly single-mode photonic crystal fiber. Optics Letters, 22(13), 961-963. https://doi.org/10.1364/OL.22.000961
Birks, T. A., Mogilevtsev, D., Knight, J. C., & Russell, P. St. J. (1999). Dispersion compensation using single-material fibers. IEEE Photonics Technology Letters, 11(6), 674-676. https://doi.org/10.1109/68.766781
Brechet, F., Marcou, J., Pagnoux, D., & Roy, P. (2000). Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method. Optical Fiber Technology, 6(2), 181-191. https://doi.org/10.1006/ofte.1999.0320
Buczynski, R., Pysz, D., Stepien, R., Kasztelanic, R., Kujawa, I., Franczyk, M., Filipkowski, A., Waddie, A. J., & Taghizadeh, M. R. (2011). Dispersion management in nonlinear photonic crystal fibres with nanostructured core. Journal of the European Optical Society – Rapid Publications, 6, 11038. https://doi.org/10.2971/jeos.2011.11038
Chu, V. L., Anuszkiewicz, A., Ramaniuk, A., Kasztelanic, R., Dinh, X. K., Cao, L. V., Trippenbach, M., & Buczyński, R. (2017). Supercontinuum generation in photonic crystal fibres with core filled with toluene. Journal of Optics, 19(12), 125604. https://doi.org/10.1088/2040-8986/aa96bc
De, M. & Singh, V. K. (2019). Multi-purpose photonic crystal fiber having advanced optical properties and long sensing range. Photonics and Nanostructures – Fundamentals and Applications, 36, 100722. https://doi.org/10.1016/j.photonics.2019.100722
Hansen, K. P. (2003). Dispersion flattened hybrid-core nonlinear photonic crystal fiber. Optics Express, 11(13), 1503-1509. https://doi.org/10.1364/OE.11.001503
Haque, M. M., Rahman, M. S., Habib, M. S., & Razzak, S. M. A. (2014). Design and characterization of single mode circular photonic crystal fiber for broadband dispersion compensation. Optik, 125(11), 2608-2611. https://doi.org/10.1016/j.ijleo.2013.11.063
Hilligsøe, K. M., Andersen, T. V, Paulsen, H. N., Nielsen, C. K., Mølmer, K., Keiding, S., Kristiansen, R., Hansen, K. P., & Larsen, J. J. (2004). Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths. Optics Express, 12(6), 1045-1054. https://doi.org/10.1364/OPEX.12.001045
Humbert, G., Knight, J. C, Bouwmans, G., Russell, P. St. J., Williams, D. P., Roberts, P. J., & Mangan, B. J. (2004). Hollow core photonic crystal fibers for beam delivery. Optics Express, 12(8), 1477-1484. https://doi.org/10.1364/OPEX.12.001477
Jin, W., Xuan, H. F., & Ho, H. L. (2010). Sensing with hollow-core photonic bandgap fibers. Measurement Science and Technology, 21(9), 094014. https://doi.org/10.1088/0957-0233/21/9/094014
Knight, J. C. (2003). Photonic crystal fibres. Nature, 424, 847-851. https://doi.org/10.1038/nature01940
Knight, J. C., Birks, T. A., Russell, P. St. J., & Atkin, D. M. (1996). All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters, 21(19), 1547-1549. https://doi.org/10.1364/OL.21.001547
Le, T. B. T., Nguyen, T. T., Vo, T. M. N., Le, C. T., Le, V. M., Cao, L. V., Dinh, X. K., Chu, V. L. (2020). Analysis of dispersion characteristics of solid-core PCFs with different types of lattice in the claddings, infiltrated with ethanol. Photonics Letters of Poland, 12(4), 106-108. https://doi.org/10.4302/plp.v12i4.1054
Luke, S., Sudheer, S. K., & Pillai, V. P. M. (2016). Tellurite based circular photonic crystal fiber with high nonlinearity and low confinement loss. Optik, 127(23), 11138-11142. https://doi.org/10.1016/j.ijleo.2016.09.024
Maji, P. S., & Chaudhuri, P. R. (2013). Circular photonic crystal fibers: Numerical analysis of chromatic dispersion and losses. International Scholarly Research Notices (ISRN Optics), 2013, 986924. https://doi.org/10.1155/2013/986924
Medjouri, A., Simohamed, L. M., Ziane, O., Boudrioua, A., & Becer, Z. (2015). Design of a circular photonic crystal fiber with flattened chromatic dispersion using a defected core and selectively reduced air holes: Application to supercontinuum generation at 1.55 µm. Photonics and Nanostructures – Fundamentals and Applications, 16, 43-50. https://doi.org/10.1016/j.photonics.2015.08.004
Nguyen, T. T., Hoang, T. D., Le, T. B. T., Dang, V. T., Chu, V. L. (2022). Optimization of optical properties of toluene-core photonic crystal fibers with circle lattice for supercontinuum generation. Journal of Optics. https://doi.org/10.1007/s12596-021-00802-y
Pandey, S. K., Singh, S., & Prajapati, Y. K. (2021). A novel PCF design with an ultra-flattened dispersion and low confinement loss by varying tiny air-hole concentration at core and cladding. Optical Review, 28(2), 304-313. https://doi.org/10.1007/s10043-021-00662-8
Pniewski, J., Stefaniuk, T., Le, V. H., Cao, L. V., Chu, V. L., Kasztelanic, R., Stępniewski, G., Ramaniuk, A., Trippenbach, M., & Buczyński, R. (2016). Dispersion engineering in nonlinear soft glass photonic crystal fibers infiltrated with liquids. Applied Optics, 55(19), 5033-5040. https://doi.org/10.1364/AO.55.005033
Rasmussen, P. D., Laegsgaard, J., & Bang, O. (2006). Chromatic dispersion of liquid-crystal infiltrated capillary tubes and photonic crystal fibers. Journal of the Optical Society of America B, 23(10), 2241-2248. https://doi.org/10.1364/JOSAB.23.002241
Russell, P. (2003). Photonic crystal fibers. Science, 299(5605), 358-362. https://doi.org/10.1126/science.1079280
Saghaei, H., & Ghanbari, A. (2017). White light generation using photonic crystal fiber with sub-micron circular lattice. Journal of Electrical Engineering, 68(4), 282-289. https://doi.org/10.1515/jee-2017-0040
Saitoh, K., Florous, N., & Koshiba, M. (2005). Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses. Optics Express, 13(21), 8365-8371. https://doi.org/10.1364/OPEX.13.008365
Saitoh, K., & Koshiba, M. (2002). Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers. IEEE Journal of Quantum Electronics, 38(7), 927-933. https://doi.org/10.1109/jqe.2002.1017609
Saitoh, K., Koshiba, M., Hasegawa, T., & Sasaoka, E. (2003). Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion. Optics Express, 11(8), 843-852. https://doi.org/10.1364/OE.11.000843
Stepniewski, G., Kasztelanic, R., Pysz, D., Stepien, R., Klimczak, M., & Buczynski, R. (2016). Temperature sensitivity of chromatic dispersion in nonlinear silica and heavy metal oxide glass photonic crystal fibers. Optical Materials Express, 6(8), 2689-2703. https://doi.org/10.1364/OME.6.002689
Su, W., Lou, S., Zou, H., & Han, B. (2014). Highly birefringent ZBLAN photonic quasi-crystal fiber with four circular air holes in the core. Infrared Physics & Technology, 66, 97-102. https://doi.org/10.1016/j.infrared.2014.05.003
Suzuki, K., Kubota, H., Kawanishi, S., Tanaka, M., & Fujita, M. (2001). Optical properties of a low-loss polarization-maintaining photonic crystal fiber. Optics Express, 9(13), 676-680. https://doi.org/10.1364/OE.9.000676
Vergnole, S., Delage, L., Reynaud, F., Labonté, L., Roy, P., Mélin, G., & Gasca, L. (2005). Test of photonic crystal fiber in broadband interferometry. Applied Optics, 44(13), 2496-2500. https://doi.org/10.1364/AO.44.002496
Vo, T. M. N., Ho, D. Q., Le, T. T., Le, T. G., Le, C. T., Chu, V. L., Nguyen, T. T., Hoang, V. T., Nguyen, T. D., & Le, V. H. (2021). Numerical simulation of all-normal dispersion visible to near-infrared supercontinuum generation in photonic crystal fibers with core filled chloroform. Hue University Journal of Science: Natural Science, 130(1B), 43-51. https://doi.org/10.26459/hueunijns.v130i1B.6243
Wang, Y., Tan, X., Jin, W., Ying, D., Hoo, Y. L., & Liu, S. (2010). Temperature-controlled transformation in fiber types of fluid-filled photonic crystal fibers and applications. Optics Letters, 35(1), 88-90. https://doi.org/10.1364/OL.35.000088
Downloads
Published
Volume and Issues
Section
Copyright & License
Copyright (c) 2022 Dang Van Trong, Le Tran Bao Tran, Chu Van Lanh, Nguyen Thi Hong Phuong, Trang Nguyen Minh Hang, Hoang Trong Duc, Nguyen Thi Thuy

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.