• Le Thi Anh Tu Dalat University, Viet Nam



Antimicrobial, Bacteria, Biosynthesis, Goosegrass, Silver nanoparticles.


Green synthesis of silver nanoparticles (SNPs) using Eleusine indica L. Gaertn leaf extract as a reducing agent is reported. SNPs were characterized through UV-Vis spectroscopy and transmission electron microscopy (TEM). The SNPs were rod like and spherical in shape with sizes from 3 to 33 nm and an average size of 16.73 nm. Seven bacterial strains were isolated from the vase water, including Bacillus cereus CA1, Alcaligenes faecalis CA2, Micrococcus luteus CA3, Pantoe agglomerans CA4, Pseudomonas aeruginosa CA5, Pseudomonas aeruginosa CA6, and Pantoe agglomerans CA7. Identifications were made according to Bergey’s Manual of Systematic Bacteriology and Bergey’s Manual of Determinative Bacteriology. The SNPs inhibited the growth of bacteria and exhibited significant antimicrobial activity against different isolated bacteria strains. SEM images showed that the SNPs damaged the cell membranes of bacteria, released plasmic contents, and altered the morphology of the cells. The impact of SNPs on gram-negative bacteria was more severe than on gram-positive bacteria. This study revealed that biosynthesized SNPs from Eleusine indica L. Gaertn leaf extract are potential agents in combating bacterial contamination.


Download data is not yet available.


Aboyewa, J. A., Sibuyi, N. R. S., Meyer, M., & Oguntibeju, O. O. (2021). Green synthesis of metallic nanoparticles using some selected medicinal plants from southern africa and their biological applications. Plants, 10(9), 1929.

Ahmed, S., Saifullah, Ahmad, M., Swami, B.L., & Ikram, S. (2016). Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. Journal of Radiation Research and Applied Sciences, 9(1), 1-7.

Alaey, M., Babalar, M., Naderi, R., & Kafi, M. (2011). Effect of pre- and postharvest salicylic acid treatment on physio-chemical attributes in relation to vase-life of rose cut flowers. Postharvest Biology and Technology, 61(1), 91-94.

Anandalakshmi, K., Venugobal, J., & Ramasamy, V. (2016). Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Applied Nanosci, 6, 399-408.

Aziz, N., Fatma, T., Varma, A., & Prasad, R. (2014). Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. Journal of Nanoparticles, 2014, 689419.

Bergey, D. H., & Holt, J. C. (2000). Bergey’s manual of determinative bacteriology (9th ed.). Lippincott Williams & Wilkins.

Bowyer, M. C., Wills, R. B. H., Badiyan, D., & Ku, V. V. V. (2003). Extending the postharvest life of carnations with nitric oxide – Comparison of fumigation and in vivo delivery. Postharvest Biology and Technology, 30(3), 281-286.

Brenner, D. J., Krieg, N. R., Staley, J. T., Garrity, G. M., & Boone, D. R. (Eds.). (2005). Bergey’s manual of systematic bacteriology (2nd ed., Vol. 2, Part B, & Vol. 3). Springer.

Büttner, D., & Bonas, U. (2010). Regulation and secretion of Xanthomonas virulence factors. FEMS Microbiology Reviews, 34(2), 107-133.

Chatterjee, T., Chatterjee, B. K., Majumdar, D., & Chakrabarti, P. (2015). Antibacterial effect of silver nanoparticles and the modeling of bacterial growth kinetics using a modified Gompertz model. Biochimica et Biophysica Acta - General Subjects, 1850(2), 299-306.

Dakal, T. C., Kumar, A., Majumdar, R. S., & Yadav, V. (2016). Mechanistic basis of antimicrobial actions of silver nanoparticles. Frontiers in Microbiology, 7, 1831.

Edrisi, B., Sadrpoor, A., & Saffari, V. R. (2012). Effects of chemicals on vase life of cut car (Dianthus caryophyllus L. ‘Delphi’) and microorganisms population in solution. Journal of Ornamental and Horticultural Plants, 2(1), 1-11.

Erickson, H. P. (2017). How bacterial cell division might cheat turgor pressure – A unified mechanism of septal division in gram-positive and gram-negative bacteria. BioEssays, 39(8), 1700045.

Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N., & Kim, J. O. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research, 52(4), 662-668.<662::AID-JBM10>3.0.CO;2-3

Hamed Chaman, S., Arab, M., Roozban, M. R., & Ahmadi, N. (2013). Postharvest longevity and quality of cut carnations, “Pax” and “Tabor”, as affected by silver nanoparticles. Acta Horticulturae, 1012, 527-532.

Hamouda, T., & Baker, Jr., J. R. (2000). Antimicrobial mechanism of action of surfactant lipid preparations in enteric gram-negative bacilli. Journal of Applied Microbiology, 89(3), 397-403.

Hemlata, P. R. M., Singh, A. P., Tejavath, K. K. (2020). Biosynthesis of silver nanoparticles using Cucumis prophetarum aqueous leaf extract and their antibacterial and antiproliferative activity against cancer cell lines. ACS Omega, 5(10), 5520-5528.

Huq, Md. A. (2020). Green synthesis of silver nanoparticles using Pseudoduganella eburnea MAHUQ-39 and their antimicrobial mechanisms investigation against drug resistant human pathogens. International Journal of Molecular Sciences, 21(4), 1510.

Hutchinson, M. J., Chebet, D. K., & Emongor, V. E. (2004). Effect of accel, sucrose and silver thiosulphate on the water relations and post harvest physiology of cut tuberose flowers. African Crop Science Journal, 11(4), 279-287.

Ibrahim, H. M. M. (2015). Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. Journal of Radiation Research and Applied Sciences, 8(3), 265-275.

Kim, J. S., & Kuk, E. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 3(1), 95-101.

Koch, R. (1883). Über die neuen Untersuchungsmethoden zum Nachweis der Mikrokosmen in Boden, Luft und Wasser. In J. Schwalbe (Ed), Gesammelte Werke von Robert Koch (pp. 274-285). Robert Koch Institute.

Kon, K., & Rai, M. (2013). Metallic nanoparticles : Mechanism of antibacterial action and influencing factors. Journal of Comparative Clinical Pathology Research, 2(2), 160-174.

Le, T. T. A. (2020). Postharvest responses of carnation cut flowers to Prunus cerasoides mediated silver nanoparticles. Science and Technology Development Journal, 23(4), 823-832.

Li, H., Huang, X., Li, J., Liu, J., Joyce, D., & He, S. (2012). Efficacy of nano-silver in alleviating bacteria-related blockage in cut rose cv. Movie Star stems. Postharvest Biology and Technology, 74, 36-41.

Logaranjan, K., Raiza, A. J., Gopinath, S. C. B., Chen, Y., & Pandian, K. (2016). Shape- and size-controlled synthesis of silver nanoparticles using aloe vera plant extract and their antimicrobial activity. Nanoscale Research Letters, 11, 520.

Lopez-Esparza, J., Espinosa-Cristobal, L. F., Donohue-Cornejo, A., & Reyes-Lopez, S. Y. (2016). Antimicrobial activity of silver nanoparticles in polycaprolactone nanofibers against gram-positive and gram-negative bacteria. Industrial & Engineering Chemistry Research, 55, 12532-12538.

Maity, T. R., Samanta, A., Saha, B., & Datta, S. (2019). Evaluation of Piper betle mediated silver nanoparticle in post-harvest physiology in relation to vase life of cut spike of gladiolus. Bulletin of the National Research Centre, 43, 9.

Manik, U. P., Nande, A., Raut, S., & Dhoble, S. J. (2020). Green synthesis of silver nanoparticles using plant leaf extraction of Artocarpus heterophylus and Azadirachta indica. Results in Materials, 6, 100086.

Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346.

Mussin, J., Robles-Botero, V., Casañas-Pimentel, R., Rojas, F., Angiolella, L., San Martín-Martínez, E., & Giusiano, G. (2021). Antimicrobial and cytotoxic activity of green synthesis silver nanoparticles targeting skin and soft tissue infectious agents. Scientific Reports, 11(1), 14566.

Nazeruddin, G. M., Prasad, N. R., Prasad, S. R., Shaikh, Y. I., Waghmare, S. R., & Adhyapak, P. (2014). Coriandrum sativum seed extract assisted in situ green synthesis of silver nanoparticle and its anti-microbial activity. Industrial Crops and Products, 60, 212-216.

Ong, S. L., Nalamolu, K. R., & Lai, H. Y. (2017). Potential lipid-lowering effects of Eleusine indica (L) Gaertn. Extract on high-fat-diet-induced hyperlipidemic rats. Pharmacognosy Magazine, 13(49), 1-9.

Pant, G., Nayak, N., & Gyana Prasuna, R. (2013). Enhancement of antidandruff activity of shampoo by biosynthesized silver nanoparticles from Solanum trilobatum plant leaf. Applied Nanoscience, 3, 431-439.

Patil, S., & Muthusamy, P. (2020). A bio-inspired approach of formulation and evaluation of Aegle marmelos fruit extract mediated silver nanoparticle gel and comparison of its antibacterial activity with antiseptic cream. European Journal of Integrative Medicine, 33, 101025.

Rafique, M., Sadaf, I., Rafique, M. S., & Tahir, M. B. (2017). A review on green synthesis of silver nanoparticles and their applications. Artificial Cells, Nanomedicine and Biotechnology, 45(7), 1272-1291.

Rauwel, P., Küünal, S., Ferdov, S., & Rauwel, E. (2015). A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Advances in Materials Science and Engineering, 2015, 682749.

Regmi, P. R., Devkota, N. R. & Timsina, J. (2004). Re-growth and nutritional potentials of Eleusine indica (L.) Gaertn. (Goose Grass). Journal of the Institute of Agriculture and Animal Science, 25, 55-63.

Salmond, G. P. C. (1994). Secretion of extracellular virulence factors by plant pathogenic bacteria. Annual Reviews of Phytopathology, 32, 181-200.

Shaikh, W. A., Chakraborty, S., Owens, G., & Islam, R. U. (2021). A review of the phytochemical mediated synthesis of AgNP (silver nanoparticle): The wonder particle of the past decade. Applied Nanoscience, 11, 2625-2660.

Shankar, S., & Rhim, J.-W. (2015). Amino acid mediated synthesis of silver nanoparticles and preparation of antimicrobial agar/silver nanoparticles composite films. Carbohydrate Polymers, 130, 353-363.

Shockman, G. D., & Barrett, J. F. (1983). Structure, function, and assembly of cell walls of gram-positive bacteria. Annual Review of Microbiology, 37, 501-527.

Siddiqi, K. S., & Husen, A. (2016). Fabrication of metal nanoparticles from fungi and metal salts: Scope and application. Nanoscale Research Letters, 11, 98.

Solgi, M. (2014). Evaluation of plant-mediated silver nanoparticles synthesis and its application in postharvest physiology of cut flowers. Physiology and Molecular Biology of Plants, 20(3), 279-285.

Talapko, J., Matijević, T., Juzbašić, M., Antolović-Požgain, A., & Škrlec, I. (2020). Antibacterial activity of silver and its application in dentistry, cardiology and dermatology. Microorganisms, 8(9), 1400.

Thammawithan, S., Siritongsuk, P., Nasompag, S., Daduang, S., Klaynongsruang, S., Prapasarakul, N., & Patramanon, R. (2021). A biological study of anisotropic silver nanoparticles and their antimicrobial application for topical use. Veterinary Sciences, 8(9), 177.

Tyavambiza, C., Elbagory, A. M., Madiehe, A. M., Meyer, M., & Meyer, S. (2021). The antimicrobial and anti-inflammatory effects of silver nanoparticles synthesised from Cotyledon orbiculata aqueous extract. Nanomaterials, 11(5), 1343.

Williamson, V. G., Faragher, J., Parsons, S., & Franz, P. (2002). Inhibiting the postharvest wounding response in wildflowers. Rural Industries Research and Development Corporation.

Zakri, Z. H. Md., Suleiman, M., Ng, S. Y., Ngaini, Z., Maili, S. & Salim, F. (2021). Eleusine indica for food and medicine. Journal of Agrobiotechnology, 12(2), 68-87.




Volume and Issues


Natural Sciences and Technology

How to Cite