ANTIBACTERIAL ACTIVITY OF SILVER NANOPARTICLES SYNTHESIZED USING ELEUSINE INDICA (L.) GAERTN. LEAF EXTRACT ON THE BACTERIA ISOLATED FROM THE VASE SOLUTION
DOI:
https://doi.org/10.37569/DalatUniversity.13.2.1027(2023)Keywords:
Antimicrobial, Bacteria, Biosynthesis, Goosegrass, Silver nanoparticles.Abstract
Green synthesis of silver nanoparticles (SNPs) using Eleusine indica (L.) Gaertn. leaf extract as a reducing agent is reported. SNPs were characterized with UV-Vis spectroscopy and transmission electron microscopy (TEM). The SNPs were rod like and spherical in shape with sizes from 3 to 33 nm and an average size of 16.73 nm. Seven bacterial strains were isolated from the vase water, including Bacillus cereus CA1, Alcaligenes faecalis CA2, Micrococcus luteus CA3, Pantoe agglomerans CA4, Pseudomonas aeruginosa CA5, Pseudomonas aeruginosa CA6, and Pantoe agglomerans CA7. Identifications were made according to Bergey’s Manual of Systematic Bacteriology and Bergey’s Manual of Determinative Bacteriology. The SNPs inhibited the growth of bacteria and exhibited significant antimicrobial activity against different isolated bacteria strains. SEM images showed that the SNPs damaged the cell membranes of bacteria, released plasmic contents, and altered the morphology of the cells. The impact of SNPs on gram-negative bacteria was more severe than on gram-positive bacteria. This study revealed that biosynthesized SNPs from Eleusine indica (L.) Gaertn. leaf extract are potential agents in combating bacterial contamination.
Downloads
References
Aboyewa, J. A., Sibuyi, N. R. S., Meyer, M., & Oguntibeju, O. O. (2021). Green synthesis of metallic nanoparticles using some selected medicinal plants from southern africa and their biological applications. Plants, 10(9), 1929. https://doi.org/10.3390/plants10091929
Ahmed, S., Saifullah, Ahmad, M., Swami, B.L., & Ikram, S. (2016). Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. Journal of Radiation Research and Applied Sciences, 9(1), 1-7. https://doi.org/10.1016/j.jrras.2015.06.006
Alaey, M., Babalar, M., Naderi, R., & Kafi, M. (2011). Effect of pre- and postharvest salicylic acid treatment on physio-chemical attributes in relation to vase-life of rose cut flowers. Postharvest Biology and Technology, 61(1), 91-94. https://doi.org/10.1016/j.postharvbio.2011.02.002
Anandalakshmi, K., Venugobal, J., & Ramasamy, V. (2016). Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Applied Nanoscience, 6, 399-408. https://doi.org/10.1007/s13204-015-0449-z
Aziz, N., Fatma, T., Varma, A., & Prasad, R. (2014). Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. Journal of Nanoparticles, 2014, 689419. https://doi.org/10.1155/2014/689419
Bergey, D. H., & Holt, J. C. (2000). Bergey’s manual of determinative bacteriology (9th ed.). Lippincott Williams & Wilkins.
Bowyer, M. C., Wills, R. B. H., Badiyan, D., & Ku, V. V. V. (2003). Extending the postharvest life of carnations with nitric oxide – Comparison of fumigation and in vivo delivery. Postharvest Biology and Technology, 30(3), 281-286. https://doi.org/10.1016/S0925-5214(03)00114-5
Brenner, D. J., Krieg, N. R., Staley, J. T., Garrity, G. M., & Boone, D. R. (Eds.). (2005). Bergey’s manual of systematic bacteriology (2nd ed., Vol. 2, Part B, & Vol. 3). Springer.
Büttner, D., & Bonas, U. (2010). Regulation and secretion of Xanthomonas virulence factors. FEMS Microbiology Reviews, 34(2), 107-133. https://doi.org/10.1111/j.1574-6976.2009.00192.x
Chatterjee, T., Chatterjee, B. K., Majumdar, D., & Chakrabarti, P. (2015). Antibacterial effect of silver nanoparticles and the modeling of bacterial growth kinetics using a modified Gompertz model. Biochimica et Biophysica Acta - General Subjects, 1850(2), 299-306. https://doi.org/10.1016/j.bbagen.2014.10.022
Dakal, T. C., Kumar, A., Majumdar, R. S., & Yadav, V. (2016). Mechanistic basis of antimicrobial actions of silver nanoparticles. Frontiers in Microbiology, 7, 1831. https://doi.org/10.3389/fmicb.2016.01831
Edrisi, B., Sadrpoor, A., & Saffari, V. R. (2012). Effects of chemicals on vase life of cut carnation (Dianthus caryophyllus L. ‘Delphi’) and microorganisms population in solution. Journal of Ornamental and Horticultural Plants, 2(1), 1-11.
Erickson, H. P. (2017). How bacterial cell division might cheat turgor pressure – A unified mechanism of septal division in gram-positive and gram-negative bacteria. BioEssays, 39(8), 1700045. https://doi.org/10.1002/bies.201700045
Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N., & Kim, J. O. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research, 52(4), 662-668. https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
Hamed Chaman, S., Arab, M., Roozban, M. R., & Ahmadi, N. (2013). Postharvest longevity and quality of cut carnations, “Pax” and “Tabor”, as affected by silver nanoparticles. Acta Horticulturae, 1012, 527-532. https://doi.org/10.17660/ActaHortic.2013.1012.70
Hamouda, T., & Baker, Jr., J. R. (2000). Antimicrobial mechanism of action of surfactant lipid preparations in enteric gram-negative bacilli. Journal of Applied Microbiology, 89(3), 397-403. https://doi.org/10.1046/j.1365-672.2000.01127.x
Hemlata, P. R. M., Singh, A. P., Tejavath, K. K. (2020). Biosynthesis of silver nanoparticles using Cucumis prophetarum aqueous leaf extract and their antibacterial and antiproliferative activity against cancer cell lines. ACS Omega, 5(10), 5520-5528. https://doi.org/10.1021/acsomega.0c00155
Huq, Md. A. (2020). Green synthesis of silver nanoparticles using Pseudoduganella eburnea MAHUQ-39 and their antimicrobial mechanisms investigation against drug resistant human pathogens. International Journal of Molecular Sciences, 21(4), 1510. https://doi.org/10.3390/ijms21041510
Hutchinson, M. J., Chebet, D. K., & Emongor, V. E. (2004). Effect of accel, sucrose and silver thiosulphate on the water relations and post harvest physiology of cut tuberose flowers. African Crop Science Journal, 11(4), 279-287. https://doi.org/10.4314/acsj.v11i4.27578
Ibrahim, H. M. M. (2015). Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. Journal of Radiation Research and Applied Sciences, 8(3), 265-275. https://doi.org/10.1016/j.jrras.2015.01.007
Kim, J. S., & Kuk, E. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 3(1), 95-101. https://doi.org/10.1016/j.nano.2006.12.001
Koch, R. (1883). Über die neuen Untersuchungsmethoden zum Nachweis der Mikrokosmen in Boden, Luft und Wasser. In J. Schwalbe (Ed.), Gesammelte Werke von Robert Koch (pp. 274-285). Robert Koch Institute. http://dx.doi.org/10.25646/5077
Kon, K., & Rai, M. (2013). Metallic nanoparticles : Mechanism of antibacterial action and influencing factors. Journal of Comparative Clinical Pathology Research, 2(2), 160-174. https://doi.org/10.1002/anie.201004169
Le, T. T. A. (2020). Postharvest responses of carnation cut flowers to Prunus cerasoides mediated silver nanoparticles. Science and Technology Development Journal, 23(4), 823-832. https://doi.org/10.32508/stdj.v23i4.2478
Li, H., Huang, X., Li, J., Liu, J., Joyce, D., & He, S. (2012). Efficacy of nano-silver in alleviating bacteria-related blockage in cut rose cv. Movie Star stems. Postharvest Biology and Technology, 74, 36-41. https://doi.org/10.1016/j.postharvbio.2012.06.013
Logaranjan, K., Raiza, A. J., Gopinath, S. C. B., Chen, Y., & Pandian, K. (2016). Shape- and size-controlled synthesis of silver nanoparticles using aloe vera plant extract and their antimicrobial activity. Nanoscale Research Letters, 11, 520. https://doi.org/10.1186/s11671-016-1725-x
Lopez-Esparza, J., Espinosa-Cristobal, L. F., Donohue-Cornejo, A., & Reyes-Lopez, S. Y. (2016). Antimicrobial activity of silver nanoparticles in polycaprolactone nanofibers against gram-positive and gram-negative bacteria. Industrial & Engineering Chemistry Research, 55, 12532-12538. https://doi.org/10.1021/acs.iecr.6b02300
Maity, T. R., Samanta, A., Saha, B., & Datta, S. (2019). Evaluation of Piper betle mediated silver nanoparticle in post-harvest physiology in relation to vase life of cut spike of gladiolus. Bulletin of the National Research Centre, 43, 9. https://doi.org/10.1186/s42269-019-0051-8
Manik, U. P., Nande, A., Raut, S., & Dhoble, S. J. (2020). Green synthesis of silver nanoparticles using plant leaf extraction of Artocarpus heterophylus and Azadirachta indica. Results in Materials, 6, 100086. https://doi.org/10.1016/j.rinma.2020.100086
Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346. https://doi.org/10.1088/0957-4484/16/10/059
Mussin, J., Robles-Botero, V., Casañas-Pimentel, R., Rojas, F., Angiolella, L., San Martín-Martínez, E., & Giusiano, G. (2021). Antimicrobial and cytotoxic activity of green synthesis silver nanoparticles targeting skin and soft tissue infectious agents. Scientific Reports, 11(1), 14566. https://doi.org/10.1038/s41598-021-94012-y
Nazeruddin, G. M., Prasad, N. R., Prasad, S. R., Shaikh, Y. I., Waghmare, S. R., & Adhyapak, P. (2014). Coriandrum sativum seed extract assisted in situ green synthesis of silver nanoparticle and its anti-microbial activity. Industrial Crops and Products, 60, 212-216. https://doi.org/10.1016/j.indcrop.2014.05.040
Ong, S. L., Nalamolu, K. R., & Lai, H. Y. (2017). Potential lipid-lowering effects of Eleusine indica (L) Gaertn. Extract on high-fat-diet-induced hyperlipidemic rats. Pharmacognosy Magazine, 13(49), 1-9. https://doi.org/10.4103/0973-1296.203986
Pant, G., Nayak, N., & Gyana Prasuna, R. (2013). Enhancement of antidandruff activity of shampoo by biosynthesized silver nanoparticles from Solanum trilobatum plant leaf. Applied Nanoscience, 3, 431-439. https://doi.org/10.1007/s13204-012-0164-y
Patil, S., & Muthusamy, P. (2020). A bio-inspired approach of formulation and evaluation of Aegle marmelos fruit extract mediated silver nanoparticle gel and comparison of its antibacterial activity with antiseptic cream. European Journal of Integrative Medicine, 33, 101025. https://doi.org/10.1016/j.eujim.2019.101025
Rafique, M., Sadaf, I., Rafique, M. S., & Tahir, M. B. (2017). A review on green synthesis of silver nanoparticles and their applications. Artificial Cells, Nanomedicine and Biotechnology, 45(7), 1272-1291. https://doi.org/10.1080/21691401.2016.1241792
Rauwel, P., Küünal, S., Ferdov, S., & Rauwel, E. (2015). A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Advances in Materials Science and Engineering, 2015, 682749. https://doi.org/10.1155/2015/682749
Regmi, P. R., Devkota, N. R. & Timsina, J. (2004). Re-growth and nutritional potentials of Eleusine indica (L.) Gaertn. (Goose Grass). Journal of the Institute of Agriculture and Animal Science, 25, 55-63. https://doi.org/10.3126/jiaas.v25i0.387
Salmond, G. P. C. (1994). Secretion of extracellular virulence factors by plant pathogenic bacteria. Annual Reviews of Phytopathology, 32, 181-200. https://doi.org/10.1146/annurev.py.32.090194.001145
Shaikh, W. A., Chakraborty, S., Owens, G., & Islam, R. U. (2021). A review of the phytochemical mediated synthesis of AgNP (silver nanoparticle): The wonder particle of the past decade. Applied Nanoscience, 11, 2625-2660. https://doi.org/10.1007/s13204-021-02135-5
Shankar, S., & Rhim, J.-W. (2015). Amino acid mediated synthesis of silver nanoparticles and preparation of antimicrobial agar/silver nanoparticles composite films. Carbohydrate Polymers, 130, 353-363. https://doi.org/10.1016/j.carbpol.2015.05.018
Shockman, G. D., & Barrett, J. F. (1983). Structure, function, and assembly of cell walls of gram-positive bacteria. Annual Review of Microbiology, 37, 501-527. https://doi.org/10.1146/annurev.mi.37.100183.002441
Siddiqi, K. S., & Husen, A. (2016). Fabrication of metal nanoparticles from fungi and metal salts: Scope and application. Nanoscale Research Letters, 11, 98. https://doi.org/10.1186/s11671-016-1311-2
Solgi, M. (2014). Evaluation of plant-mediated silver nanoparticles synthesis and its application in postharvest physiology of cut flowers. Physiology and Molecular Biology of Plants, 20(3), 279-285. https://doi.org/10.1007/s12298-014-0237-3
Talapko, J., Matijević, T., Juzbašić, M., Antolović-Požgain, A., & Škrlec, I. (2020). Antibacterial activity of silver and its application in dentistry, cardiology and dermatology. Microorganisms, 8(9), 1400. https://doi.org/10.3390/microorganisms8091400
Thammawithan, S., Siritongsuk, P., Nasompag, S., Daduang, S., Klaynongsruang, S., Prapasarakul, N., & Patramanon, R. (2021). A biological study of anisotropic silver nanoparticles and their antimicrobial application for topical use. Veterinary Sciences, 8(9), 177. https://doi.org/10.3390/vetsci8090177
Tyavambiza, C., Elbagory, A. M., Madiehe, A. M., Meyer, M., & Meyer, S. (2021). The antimicrobial and anti-inflammatory effects of silver nanoparticles synthesised from Cotyledon orbiculata aqueous extract. Nanomaterials, 11(5), 1343. https://doi.org/10.3390/nano11051343
Williamson, V. G., Faragher, J., Parsons, S., & Franz, P. (2002). Inhibiting the postharvest wounding response in wildflowers. Rural Industries Research and Development Corporation.
Zakri, Z. H. Md., Suleiman, M., Ng, S. Y., Ngaini, Z., Maili, S. & Salim, F. (2021). Eleusine indica for food and medicine. Journal of Agrobiotechnology, 12(2), 68-87. https://doi.org/10.37231/jab.2021.12.2.260
Downloads
Published
Volume and Issues
Section
Copyright & License
Copyright (c) 2022 Le Thi Anh Tu

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.