DESIGN OF A HIGH-SENSITIVITY DEVICE FOR DETECTING WEAK MAGNETIC FIELDS

Authors

  • Dao Trong Vinh Vietnam Maritime University, Viet Nam
  • Le Dang Khanh Vietnam Maritime University, Viet Nam
  • Le Minh Huy Phenikaa University, Viet Nam
  • Nguyen Dang Khoa Phenikaa University, Viet Nam
  • Luong Van Su Phenikaa University, Viet Nam

DOI:

https://doi.org/10.37569/DalatUniversity.13.1.1042(2023)

Keywords:

Fluxgate, Magnetic sensors, Magnetometers.

Abstract

An anti-serial fluxgate sensor configuration is proposed in this report. The design comprises two identical bilayer-rod fluxgate sensors connected anti-serially in a straight line. Each bilayer-rod sensor is constructed of an excitation coil and a pick-up coil wrapped around a core. The core material consists of Metglas ribbon, an amorphous alloy with high permeability, negligible hysteresis, and a high saturated magnetic field. The core is cut into a bar shape and uses double layers to enhance modulated flux density. A high sensitivity of 10 mV/Oe (with excitation of 45 kHz and 250 mA) is obtained experimentally with low noise of 1´10-5 Oe/Ö Hz at 1 Hz. In measurements of weak magnetic fields, the azimuth response indicates its vector feature. The proposed design is suitable for electronic compass and displacement applications.

Downloads

Download data is not yet available.

References

Díaz-Michelena, M. (2009). Small magnetic sensors for space applications. Sensors, 9(4), 2271-2288. https://doi.org/10.3390/s90402271

Janosek, M. (2017). Parallel fluxgate magnetometers. In A. Grosz, M. J. Haji-Sheikh, & S. C. Mukhopadhyay (Eds.), High Sensitivity Magnetometers (pp. 41-61). Springer International Publishing. https://doi.org/10.1007/978-3-319-34070-8_2

Khan, M. A., Sun, J., Li, B., Przybysz, A., & Kosel, J. (2021). Magnetic sensors–A review and recent technologies. Engineering Research Express, 3(2), 022005. https://doi.org/10.1088/2631-8695/ac0838

Liu, H., Dong, H., Ge, J., & Liu, Z. (2022). An overview of sensing platform-technological aspects for vector magnetic measurement: A case study of the application in different scenarios. Measurement, 187, 110352. https://doi.org/10.1016/j.measurement.2021.110352

Metglas.com. (n.d.). Magnetic alloy 2714A technical bulletin. https://metglas.com/wp-content/uploads/2021/06/2714A-Magnetic-Alloy-updated.pdf

Moldovanu, C., Brauer, P., Nielsen, O. V., & Petersen, J. R. (2000). The noise of the Vacquier type sensors referred to changes of the sensor geometrical dimensions. Sensors and Actuators A: Physical, 81(1-3), 197-199. https://doi.org/10.1016/S0924-4247(99)00087-4

Mosahebfard, A., Hosseinzadeh, A., Daneshmandi, O., Yazdjerdy, M. & Abdi, M., (2021). Design, fabrication and characterisation of a three-axis, ring-core fluxgate magnetometer. Pramana, 95(3), 119. https://doi.org/10.1007/s12043-021-02150-9

Ripka, P. (2003). Advances in fluxgate sensors. Sensors and Actuators A: Physical, 106(1-3), 8-14. https://doi.org/10.1016/S0924-4247(03)00094-3

Ripka, P., & Arafat, M. M. (2019). Magnetic sensors: Principles and applications. In Reference Module in Materials Science and Materials Engineering (pp 1-11). Elsevier. https://doi.org/10.1016/B978-0-12-803581-8.11680-7

Savarapu, R., Sohan, A., & Kollu, P. (2022). Fabrication advancements in integrated fluxgate sensors: A mini review. Advanced Engineering Materials, 24(4), 2101040. https://doi.org/10.1002/adem.202101040

Downloads

Published

04-10-2022

Volume and Issues

Section

Natural Sciences and Technology

How to Cite

Dao, T. V., Le, D. K., Le, M. H., Nguyen, D. K., & Luong, V. S. (2022). DESIGN OF A HIGH-SENSITIVITY DEVICE FOR DETECTING WEAK MAGNETIC FIELDS. Dalat University Journal of Science, 13(1), 59-70. https://doi.org/10.37569/DalatUniversity.13.1.1042(2023)