BINARY HARD-SPHERE COLLOID-DROPLET MIXTURES WITH THE PYRITE-TYPE STRUCTURE
DOI:
https://doi.org/10.37569/DalatUniversity.13.1.1048(2023)Keywords:
Colloid-droplet mixtures, Monte Carlo simulations, Patchy colloids, Space-filling curves.Abstract
We investigate the assembly of a binary mixture of patchy colloids and droplets into crystal structures by use of the space-filling principle and Metropolis Monte Carlo simulations. Here, colloids with six patches in an octahedral symmetry attract droplets, whereas the colloid-colloid and droplet-droplet pairwise interactions are purely hard-core repulsions. Within parameter space regions that allow for stable binary crystals, we find the formation of different structure types, which are colloidal analogs of the NaCl phase and pyrite (FeS2) phase, as a function of the droplet-to-colloid sphere diameter ratio. This finding is consistent with theoretical predictions. Notably, while the NaCl structure type is a commonly known structure of hard-sphere colloids and nanoparticles, the formation of the FeS2 structure type from colloidal dispersion has not been explored. Our approach suggests a potential route to obtain colloidal crystals with more complex structures.
Downloads
References
Bartlett, P., Ottewill, R., & Pusey, P. (1990). Freezing of binary mixtures of colloidal hard spheres. The Journal of Chemical Physics, 93(2), 1299-1312. https://doi.org/10.1063/1.459142
Bartlett, P., Ottewill, R., & Pusey, P. (1992). Superlattice formation in binary mixtures of hard-sphere colloids. Physical Review Letters, 68(25), 3801. https://doi.org/10.1103/PhysRevLett.68.3801
Ben-Simon, A., Eshet, H., & Rabani, E. (2013). On the phase behavior of binary mixtures of nanoparticles. ACS Nano, 7(2), 978-986. https://doi.org/10.1021/nn302712h
Bianchi, E., Blaak, R., & Likos, C. N. (2011). Patchy colloids: State of the art and perspectives. Physical Chemistry Chemical Physics, 13(14), 6397-6410. https://doi.org/10.1039/c0cp02296a
Binks, B. P., & Horozov, T. S. (2006). Colloidal particles at liquid interfaces. Cambridge University Press. https://doi.org/10.1017/CBO9780511536670
Birkholz, M. (1992). The crystal energy of pyrite. Journal of Physics: Condensed Matter, 4(29), 6227. https://doi.org/10.1088/0953-8984/4/29/007
Bodnarchuk, M. I., Erni, R., Krumeich, F., & Kovalenko, M. V. (2013). Binary superlattices from colloidal nanocrystals and giant polyoxometalate clusters. Nano Letters, 13(4), 1699-1705. https://doi.org/10.1021/nl4002475
Bommineni, P. K., Klement, M., & Engel, M. (2020). Spontaneous crystallization in systems of binary hard sphere colloids. Physical Review Letters, 124(21), 218003. https://doi.org/10.1103/PhysRevLett.124.218003
Braz Teixeira, R., de Las Heras, D., Tavares, J. M., & Telo da Gama, M. M. (2021). Phase behavior of a binary mixture of patchy colloids: Effect of particle size and gravity. The Journal of Chemical Physics, 155(4), 044903. https://doi.org/10.1063/5.0056652
Cai, Z., Li, Z., Ravaine, S., He, M., Song, Y., Yin, Y., Zheng, H., Teng, J., & Zhang, A. (2021). From colloidal particles to photonic crystals: Advances in self-assembly and their emerging applications. Chemical Society Reviews, 50(10), 5898-5951. https://doi.org/10.1039/D0CS00706D
Chandra, A., & Gerson, A. R. (2010). The mechanisms of pyrite oxidation and leaching: A fundamental perspective. Surface Science Reports, 65(9), 293-315. https://doi.org/10.1016/j.surfrep.2010.08.003
Cong, H., Yu, B., Tang, J., Li, Z., & Liu, X. (2013). Current status and future developments in preparation and application of colloidal crystals. Chemical Society Reviews, 42(19), 7774-7800. https://doi.org/10.1039/c3cs60078e
Dasgupta, T., & Dijkstra, M. (2018). Towards the colloidal Laves phase from binary hardsphere mixtures via sedimentation. Soft Matter, 14(13), 2465-2475. https://doi.org/10.1039/C8SM00237A
De Boer, F. R., Boom, R., Mattens, W. C. M., Miedema, A. R., & Niessen, A. K. (1988). Cohesion in metals: Transition metal alloys. North-Holland.
de Las Heras, D., Tavares, J. M., & da Gama, M. M. T. (2011). Phase diagrams of binary mixtures of patchy colloids with distinct numbers of patches: The network fluid regime. Soft Matter, 7(12), 5615-5626. https://doi.org/10.1039/c0sm01493a
Dijkstra, M., van Roij, R., & Evans, R. (1999). Phase diagram of highly asymmetric binary hard-sphere mixtures. Physical Review E, 59(5), 5744. https://doi.org/10.1103/PhysRevE.59.5744
Eldridge, M., Madden, P., & Frenkel, D. (1993). A computer simulation investigation into the stability of the AB2 superlattice in a binary hard sphere system. Molecular Physics, 80(4), 987-995. https://doi.org/10.1080/00268979300102811
Filion, L., & Dijkstra, M. (2009). Prediction of binary hard-sphere crystal structures. Physical Review E, 79(4), 046714. https://doi.org/10.1103/PhysRevE.79.046714
Fortini, A. (2012). Clustering and gelation of hard spheres induced by the Pickering effect. Physical Review E, 85(4), 040401. https://doi.org/10.1103/PhysRevE.85.040401
Ha, N. T., Nam, N. T. T., & Hai, P. V. (2021). Tunable crystal structures of binary mixtures of various patchy colloids and droplets. Journal of Dispersion Science and Technology, 1-11. https://doi.org/10.1080/01932691.2021.1994416
Hansen, J.-P., & McDonald, I. R. (2013). Theory of simple liquids: With applications to soft matter. Academic Press. https://doi.org/10.1016/B978-0-12-387032-2.00012-X
Hudson, T. S. (2010). Dense sphere packing in the NaZn13 structure type. The Journal of Physical Chemistry C, 114(33), 14013-14017. https://doi.org/10.1021/jp1045639
Hudson, T. S., & Harrowell, P. (2008). Dense packings of hard spheres of different sizes based on filling interstices in uniform three-dimensional tilings. The Journal of Physical Chemistry B, 112(27), 8139-8143. https://doi.org/10.1021/jp802912a
Hunt, N., Jardine, R., & Bartlett, P. (2000). Superlattice formation in mixtures of hardsphere colloids. Physical Review E, 62(1), 900. https://doi.org/10.1103/PhysRevE.62.900
Hynninen, A.-P., Thijssen, J. H., Vermolen, E., Dijkstra, M., & Van Blaaderen, A. (2007). Self-assembly route for photonic crystals with a bandgap in the visible region. Nature Materials, 6(3), 202-205. https://doi.org/10.1038/nmat1841
Lauga, E., & Brenner, M. P. (2004). Evaporation-driven assembly of colloidal particles. Physical Review Letters, 93(23), 238301. https://doi.org/10.1103/PhysRevLett.93.238301
Li, W., Palis, H., Merindol, R., Majimel, J., Ravaine, S., & Duguet, E. (2020). Colloidal molecules and patchy particles: Complementary concepts, synthesis and self-assembly. Chemical Society Reviews, 49(6), 1955-1976. https://doi.org/10.1039/C9CS00804G
Liu, S., Li, Y., Yang, J., Tian, H., Zhu, B., & Shi, Y. (2014). First-principles study of high-pressure stability, structure, and elasticity of FeS2 polymorphs. Physics and Chemistry of Minerals, 41(3), 189-196.mhttps://doi.org/10.1007/s00269-013-0637-x
Marín-Aguilar, S., Smallenburg, F., Sciortino, F., & Foffi, G. (2021). Monodisperse patchy particle glass former. The Journal of Chemical Physics, 154(17), 174501. https://doi.org/10.1063/5.0036963
Murray, M., & Sanders, J. (1980). Close-packed structures of spheres of two different sizes II. The packing densities of likely arrangements. Philosophical Magazine A, 42(6), 721-740. https://doi.org/10.1080/01418618008239380
Román, F. L., Schmidt, M., & Löwen, H. (2000). Colloidal particles in emulsions. Physical Review E, 61(5), 5445. https://doi.org/10.1103/PhysRevE.61.5445
Romano, F., Sanz, E., & Sciortino, F. (2010). Phase diagram of a tetrahedral patchy particle model for different interaction ranges. The Journal of Chemical Physics, 132(18), 184501. https://doi.org/10.1063/1.3393777
Schofield, A. B. (2001). Binary hard-sphere crystals with the cesium chloride structure. Physical Review E, 64(5), 051403. https://doi.org/10.1103/PhysRevE.64.051403
Schwarz, I., Fortini, A., Wagner, C. S., Wittemann, A., & Schmidt, M. (2011). Monte Carlo computer simulations and electron microscopy of colloidal cluster formation via emulsion droplet evaporation. The Journal of Chemical Physics, 135(24), 244501. https://doi.org/10.1063/1.3672106
Seiferling, F., de Las Heras, D., & Telo da Gama, M. M. (2016). Percolation in binary and ternary mixtures of patchy colloids. The Journal of Chemical Physics, 145(7), 074903. https://doi.org/10.1063/1.4960808
Shevchenko, E. V., Kortright, J., Talapin, D. V., Aloni, S., & Alivisatos, A. P. (2007). Quasi-ternary nanoparticle superlattices through nanoparticle design. Advanced Materials, 19(23), 4183-4188. https://doi.org/10.1002/adma.200701470
Van, H. P., Fortini, A., & Schmidt, M. (2020). Crystal structures in binary hard-sphere colloid-droplet mixtures with patchy cross interactions. Physical Review E, 101(1), 012608. https://doi.org/10.1103/PhysRevE.101.012608
Varga, I., Kun, F., & Pál, K. F. (2004). Structure formation in binary colloids. Physical Review E, 69(3), 030501. https://doi.org/10.1103/PhysRevE.69.030501
Vermolen, E., Kuijk, A., Filion, L., Hermes, M., Thijssen, J., Dijkstra, M., & Van Blaaderen, A. (2009). Fabrication of large binary colloidal crystals with a NaCl structure. Proceedings of the National Academy of Sciences, 106(38), 16063-16067. https://doi.org/10.1073/pnas.0900605106
Wang, Y., Wang, Y., Breed, D. R., Manoharan, V. N., Feng, L., Hollingsworth, A. D., Weck, M., & Pine, D. J. (2012). Colloids with valence and specific directional bonding. Nature, 491(7422), 51-55. https://doi.org/10.1038/nature11564
Yi, G.-R., Pine, D. J., & Sacanna, S. (2013). Recent progress on patchy colloids and their self-assembly. Journal of Physics: Condensed Matter, 25(19), 193101. https://doi.org/10.1088/0953-8984/25/19/193101
Zhu, Y., & Chapman, W. G. (2021). Phase behavior and percolation in mixed patchy colloids. The Journal of Chemical Physics, 154(13), 134901. https://doi.org/10.1063/5.0039287
Downloads
Published
Volume and Issues
Section
Copyright & License
Copyright (c) 2023 Vu Minh Tu, Nguyen Tran Thanh Nam, Tran Phan Thuy Linh, Pham Van Dien, Doan Thi Hien, Tran Manh Cuong, Pham Van Hai

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.