QUANTUM TELEPORTATION OF ENTANGLED STATES VIA GENERALIZED PHOTON-ADDED PAIR COHERENT STATE
DOI:
https://doi.org/10.37569/DalatUniversity.13.1.1067(2023)Keywords:
Entanglement, Jaynes-Cummings model, Photon-added pair coherent state, Quantum channel, Quantum teleportation.Abstract
In this paper, we study the quantum teleportation of an unknown atomic state based on the two-photon Jaynes-Cummings model, consisting of an effective two-level atom with a two-mode field in the generalized photon-added pair coherent state (GPAPCS). By applying the detecting method, we use a scheme that includes two two-level atoms and a cavity field to teleport the unknown atomic state from a sender to a receiver. The results show that the number of photons added to the field and the intensity of the initial field influence the average fidelity and success probability of the teleportation process. The time-evolution dependence of the average fidelity is also considered and compared for the field in the pair coherent state and in the GPAPCS.
Downloads
References
Bennett, C. H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., & Wootters, W. K. (1993). Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical Review Letters, 70(13), 1895-1899. https://doi.org/10.1103/PhysRevLett.70.1895
Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., & Zeilinger, A. (1997). Experimental quantum teleportation. Nature, 390, 575-579. https://doi.org/10.1038/37539
Cardoso, W. B., Avelar, A. T., Baseia, B., & de Almeida, N. G. (2005). Teleportation of entangled states without Bell-state measurement. Physical Review A, 72(4), 045802. https://doi.org/10.1103/PhysRevA.72.045802
Cirac, J. I., & Parkins, A. S. (1994). Schemes for atomic-state teleportation. Physical Review A, 50(6), 4441-4444. https://doi.org/10.1103/PhysRevA.50.R4441
dSouza, A. D., Cardoso, W. B., Avelar, A. T., & Baseia, B. (2009). A note on approximate teleportation of an unknown atomic scale in the two-photon Jaynes-Cummings model. Physica A: Statistical Mechanics and its Applications, 388(7), 1331-1336. https://doi.org/10.1016/j.physa.2008.12.018
dSouza, A. D., Cardoso, W. B., Avelar, A. T., & Baseia, B. (2011). Teleportation of entangled states without Bell-state measurement via a two-photon process. Optics Communications, 284(4), 1086-1089. https://doi.org/10.1016/j.optcom.2010.10.032
Ho, S. C., & Truong, M. D. (2022). Sum squeezing, entanglement and quantum teleportation of the superposition of photon-added pair coherent state. Journal of Physics: Conference Series, 2269, 012003. https://doi.org/10.1088/1742-6596/2269/1/012003
Horodecki, M., Horodecki, P., Horodecki, R. (1999). General teleportation channel, singlet fraction, and quasidistillation. Physical Review A, 60(3), 1888-1898. https://doi.org/10.1103/PhysRevA.60.1888
Le, T. H. T., & Truong, M. D. (2022). Dynamical properties of the field in generalized photon-added pair coherent state in the Jaynes-Cummings model. International Journal of Theoretical Physics, 61(5), 129. https://doi.org/10.1007/s10773-022-05111-z
Liu, J.-M., & Weng, B. (2006). Approximate teleportation of an unknown atomic state in the two-photon Jaynes-Cummings model. Physica A: Statistical Mechanics and its Applications, 367, 215-219. https://doi.org/10.1016/j.physa.2005.11.040
Metwally, N., Abdelaty, M., & Obada, A.-S. F. (2004). Quantum teleportation via entangled states generated by the Jaynes-Cummings model. Chaos, Solitons & Fractals, 22(3), 529-535. https://doi.org/10.1016/j.chaos.2004.02.045
Metwally, N., Abdelaty, M., & Obada, A.-S. F. (2005). Entangled states and information induced by the atom-field interaction. Optics Communications, 250(1-3), 148-156. https://doi.org/10.1016/j.optcom.2005.02.007
Nguyen, T. X. H., & Truong, M. D. (2016). Nonclassical properties and teleportation in the two-mode photon-added displaced squeezed states. International Journal of Modern Physics B, 30(7), 1650032. https://doi.org/10.1142/S0217979216500326
Pakniat, R., Tavassoly, M. K., & Zandi, M. H. (2017). Entanglement swapping and teleportation based on cavity QED method using the nonlinear atom-field interaction: Cavities with a hybrid of coherent and number states. Optics Communications, 382, 381-385. https://doi.org/10.1016/j.optcom.2016.08.021
Tran, Q. D., & Truong, M. D. (2022). Entanglement, nonlocal features, quantum teleportation of two-mode squeezed vacuum states with superposition of photon-pair addition and subtraction operations. Optik, 257, 168744. https://doi.org/10.1016/j.ijleo.2022.168744
Tran, Q. D., Truong, M. D., & Ho, S. C. (2018). Improvement quantum teleportation via the pair coherent states. Journal of Physics: Conference Series, 1034(1), 012004. https://doi.org/10.1088/1742-6596/1034/1/012004
Truong, M. D., Ho, S. C., & Tran, Q. D. (2021). Detecting nonclassicality and non-Gaussianity by the Wigner function and quantum teleportation in photon-added-and-subtracted two modes pair coherent state. Journal of Computational Electronics, 20(6), 2124-2134. https://doi.org/10.1007/s10825-021-01753-0
Truong, M. D., Tran, Q. D., & Ho, S. C. (2020). Quantum entanglement and teleportation in superposition of multiple-photon-added two-mode squeezed vacuum state. International Journal of Modern Physics B, 34(25), 2050223. https://doi.org/10.1142/S0217979220502239
Xue, Z. Y., Yang, M., Yi, Y.-M., & Cao, Z. L. (2006). Teleportation for atomic entangled state by entanglement swapping with separate measurements in cavity QED. Optics Communications, 258(2), 315-320. https://doi.org/10.1016/j.optcom.2005.08.003
Zheng, S.-B. (1999). Teleportation of atomic states via resonant atom-field interaction. Optics Communications, 167, 111-113. https://doi.org/10.1016/S0030-4018(99)00282-5
Zheng, S.-B. (2004). Scheme for approximate conditional teleportation of an unknown atomic state without the Bell-state measurement. Physical Review A, 69(6), 064302. https://doi.org/10.1103/PhysRevA.69.064302
Downloads
Published
Volume and Issues
Section
Copyright & License
Copyright (c) 2023 Le Thi Hong Thanh, Phan Ngoc Duy Tinh, Truong Minh Duc

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.