CONSERVATION STATUS AND RESEARCH ON PROPAGATION OF CAMELLIA PIQUETIANA IN LAM DONG PROVINCE, VIETNAM

Authors

  • Le Hong En Forest Science Institute of Central Highlands and South of Central Vietnam, Vietnamese Academy of Forest Science, Viet Nam https://orcid.org/0009-0005-2687-2768
  • Truong Quang Cuong Bidoup Nui Ba National Park, Viet Nam https://orcid.org/0000-0003-4904-5683
  • Ngo Van Cam Forest Science Institute of Central Highlands and South of Central Vietnam, Vietnamese Academy of Forest Science, Viet Nam https://orcid.org/0009-0001-2312-1089
  • Nguyen Pham Doan Forest Science Institute of Central Highlands and South of Central Vietnam, Vietnamese Academy of Forest Science, Viet Nam https://orcid.org/0009-0009-3764-4858
  • Nguyen Van Phuc Forest Science Institute of Central Highlands and South of Central Vietnam, Vietnamese Academy of Forest Science, Viet Nam https://orcid.org/0009-0009-2187-7665
  • Do Van Duong Forest Science Institute of Central Highlands and South of Central Vietnam, Vietnamese Academy of Forest Science, Viet Nam https://orcid.org/0009-0006-0706-8069
  • Le Thi Thuy Hoa Forest Science Institute of Central Highlands and South of Central Vietnam, Vietnamese Academy of Forest Science, Viet Nam https://orcid.org/0009-0003-0748-9339
  • Ho Si Hung Forest Science Institute of Central Highlands and South of Central Vietnam, Vietnamese Academy of Forest Science, Viet Nam https://orcid.org/0009-0003-5122-029X
  • Nguyen Ba Trung Forest Science Institute of Central Highlands and South of Central Vietnam, Vietnamese Academy of Forest Science, Viet Nam https://orcid.org/0009-0008-7931-7743
  • Ngo Giang Phi Forest Science Institute of Central Highlands and South of Central Vietnam, Vietnamese Academy of Forest Science, Viet Nam https://orcid.org/0009-0006-5354-3713
  • Ho Thi Phuong Vietnam National University of Forestry - Gia Lai Campus, Viet Nam https://orcid.org/0009-0004-5312-7790

DOI:

https://doi.org/10.37569/DalatUniversity.14.1.1224(2024)

Keywords:

Camellia piquetiana, Conservation, Cuttings, IBA, Rooting.

Abstract

Camellia piquetiana, one of the endemic species of Vietnam, is classified as Critically Endangered (CR) by the IUCN. A reassessment of its conservation status and research into propagation methods are essential for its conservation. Our survey recorded 246 mature individuals in the wild at three locations in Lam Dong Province: Bao Loc City, Bao Lam District, and Da Huoai District. The conservation assessment for this species, determined with GeoCat software, is still CR. Propagation by partially uncoated seeds had a higher propagation efficiency than by coated seeds. The germination percentage was 92.22%; the seeds began germination after 11 days and finished after 29.33 days. The results showed that stem cuttings immersed in a concentration of 500 ppm indole-3-butyric acid for 10 minutes with a 100% coir substrate gave the highest survival percentage (90.00%), rooting percentage (86.67%), average number of roots (4.54), root length (4.86 cm), and rooting index (21.98) after 90 days.

Downloads

Download data is not yet available.

References

Abad, M., Fornes, F., Carrión, C., Noguera, V., Noguera, P., Maquieira, Á., & Puchades, R. (2005). Physical properties of various coconut coir dusts compared to peat. HortScience, 40(7), 2138–2144. https://doi.org/10.21273/HORTSCI.40.7.2138

Agarwal, B., Singh, U., & Banerjee, M. (1992). In vitro clonal propagation of tea (Camellia sinensis (L.) O. Kuntze). Plant Cell, Tissue and Organ Culture, 30, 1–5. https://doi.org/10.1007/BF00039995

Al-Saqri, F., & Alderson, P. G. (1996). Effects of IBA, cutting type and rooting media on rooting of Rosa centifolia. Journal of Horticultural Science, 71(5), 729–737. https://doi.org/10.1080/14620316.1996.11515453

Arciniega-Carreón, I.-Y., Oliver-Salvador, C., Ramírez-Sotelo, M.-G., & Salas, C. E. (2017). Efficient in vitro plant regeneration from internode explants of Ibervillea sonorae: An antidiabetic medicinal plant. HortScience, 52(7), 1000–1005. https://doi.org/10.21273/HORTSCI11942-17

Beech, E., Barstow, M., & Rivers, M. (2017). The red list of Theaceae. Botanic Gardens Conservation International.

Dao, T. D., Mai, T. L., Tran, D. M., Dang, V. T., Ly, T. T. H., Nguyen, V. T., Phung, D. T., Nguyen, T. T. P., Ninh, V. K., Dang, T. H. H., Tran, C. N., Tran, H. Q., Pham, D. S., Vu, T. L., Nguyen, H. T., Hoang, T. S., Trinh, N. B., Ho, T. L., Tran, A. H., . . . Tran, V. D. (2019). Cutting size and position affect rooting efficiency of Camellia impressinervis: A golden camellia. Plant Cell Biotechnology and Molecular Biology, 20(3&4), 179–187.

Do, T. H. T. (2021). Research on effects of cutting origin, types and hormone type and concentration to the rooting efficiency of camellia (Camellia euplebia and Camellia impresssinervis). Journal of Forestry Science and Technology, 6, 34–41.

Eed, A., & Burgoyne, A. (2014). Effect of different rooting media and plant growth regulators on rooting of jojoba (Simmondsia chinensis (Link) Schneider) semi-hard wood cuttings under plastic tunnel conditions. In P. S. Sandu, & T. Yingthawornsuk (Eds.), International Conference on Agricultural, Ecological, and Medical Sciences (AEMS-2014), Bali (Indonesia), 9–12.

Ellyard, R. K., & Ollerenshaw, P. J. (1984). Effect of indolebutyric acid, medium composition and cutting type on rooting of Grevillea johnsonii cuttings at two basal temperatures. Proceedings of the International Plant Propagator's Society, 34, 101–107.

Grange, R. I., & Loach, K. (1983). The water economy of unrooted leafy cuttings. Journal of Horticultural Science, 58(1), 9–17. https://doi.org/10.1080/00221589.1983.11515084

Hansen, J. (1989). Influence of cutting position and temperature during rooting on adventitious root formation and axillary bud break of Stephanotis floribunda. Scientia Horticulturae, 40(4), 345–354. https://doi.org/10.1016/0304-4238(89)90108-8

Hartmann, H. T., & Kester, D. E. (1975). Plant propagation: Principles and practices. Prentice-Hall.

IUCN Standards and Petitions Subcommittee (IUCN). (2022). Guidelines for using the IUCN Red List Categories and Criteria (Version 15.1). Prepared by the Standards and Petitions Subcommittee. https://www.iucnredlist.org/resources/redlistguidelines

Leakey, R. R. B., & Mohammed, H. R. S. (1985). The effects of stem length on root initiation in sequential single-node cuttings of Triplochiton scleroxylon K. Schum. Journal of Horticultural Science, 60(3), 431–437. https://doi.org/10.1080/14620316.1985.11515648

Li, Z., Tan, X., Liu, Z., Lin, Q., Zhang, L., Yuan, J., Zeng, Y., & Wu, L. (2016). In vitro propagation of Camellia oleifera Abel. using hypocotyl, cotyledonary node, and radicle explants. HortScience, 51(4), 416–421. https://doi.org/10.21273/HORTSCI.51.4.416

Loreti, F., & Hartmann, H. T. (1964). Propagation of olive trees by rooting leafy cuttings under mist. Proceedings of the American Society for Horticultural Science, 85, 257–264.

Ming, T. L., & Bartholomew, B. (2007). Theaceae. In Z. Y. Wu, P. H. Raven, & D. Y. Hong (Eds.), Flora of China (Vol. 12) (pp. 366–478). Science Press and Missouri Botanical Garden Press.

Nguyen, T. H., Luu, Q. T., Nguyen, D. V., & Bui, T. T. (2021). Study on the propagation of golden camellia (Camellia euphlebia) by cutting method. Vietnam Journal of Agriculture and Rural Development, 20, 92–97.

Nguyen, V. K., Nguyen, T. C., & Nguyen, T. T. (2014). Propagation of Camellia piquetiana (Pierre) Sealy in vitro. VNU Journal of Science: Natural Sciences and Technology, 30(3), 17–25.

Nyomora, H. V. M., Amri, E., Lyaruu, A. S., & Kanyeka, Z. L. (2009). Growing media for greenhouse production. Research Journal of Agriculture and Biological Sciences, 5(4), 524–532.

OuYang, F., Wang, J., & Li, Y. (2015). Effects of cutting size and exogenous hormone treatment on rooting of shoot cuttings in Norway spruce [Picea abies (L.) Karst.]. New Forests, 46, 91–105. https://doi.org/10.1007/s11056-014-9449-1

Pacurar, D. I., Perrone, I., & Bellini, C. (2014). Auxin is a central player in the hormone cross‐talks that control adventitious rooting. Physiologia Plantarum, 151(1), 83–96. https://doi.org/10.1111/ppl.12171

Peterson, B. J., Sanchez, O., Burnett, S. E., & Hayes, D. J. (2018). Comparison of four systems for propagation of coleus by stem cuttings. HortTechnology, 28(2), 143–148. https://doi.org/10.21273/HORTTECH03926-17

Ren, H., Jian, S., Chen, Y., Liu, H., Zhang, Q., Liu, N., Xu, Y., & Luo, J. (2014). Distribution, status, and conservation of Camellia changii Ye (Theaceae), a Critically Endangered plant endemic to southern China. Oryx, 48(3), 358–360. https://doi.org/10.1017/S0030605313001324

Rivers, M. C. (2018). Camellia piquetiana. The IUCN red list of threatened species 2018: https://dx.doi.org/10.2305/IUCN.UK.2018-1.RLTS.T191437A1981744.en. [Accessed on 2 September 2023].

Roulund, H. (1975). The effect of cyclophysis and topophysis on the rooting ability of Norway spruce cuttings. Symposium on Propagation in Arboriculture, 54(5), 39–50. https://doi.org/10.17660/ActaHortic.1975.54.5

Rout, G. R. (2006). Effect of auxins on adventitious root development from single node cuttings of Camellia sinensis (L.) Kuntze and associated biochemical changes. Plant Growth Regulation, 48, 111–117. https://doi.org/10.1007/s10725-005-5665-1

Royal Botanic Gardens. (2024). GeoCAT software application. http://geocat.kew.org/editor

Schulze, J. A., Contreras, R. N., & Scagel, C. F. (2017). Comparing vegetative propagation of two ‘Schipkaensis’ common cherrylaurel ploidy levels. HortTechnology, 27(1), 69–72. https://doi.org/10.21273/HORTTECH03600-16

Van der Leek, H. A. A. (1924). Root development in woody cuttings. Mededelingen Landbouwhogeschool Wageningen, 28, 211–230.

Wei, K., Wang, L., Cheng, H., Zhang, C., Ma, C., Zhang, L., Gong, W., & Wu, L. (2013). Identification of genes involved in indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.) by suppression subtractive hybridization. Gene, 514(2), 91–98. https://doi.org/10.1016/j.gene.2012.11.008

Wei, K., Wang, L., Ruan, L., Zang, C., Wu, L., Li, H., & Cheng, H. (2018). Endogenous nitric oxide and hydrogen peroxide detection in indole-3-butyric acid-induced adventitious root formation in Camellia sinensis. Journal of Integrative Agriculture, 17(10), 2273–2280. https://doi.org/10.1016/S2095-3119(18)62059-3

Wei, K., Wang, L.-Y., Wu, L.-Y., Zhang, C.-C., Li, H.-L., Tan, L.-Q., Cao, H.-L., & Cheng, H. (2014). Transcriptome analysis of indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.). PLoS One, 9(9), e107201. https://doi.org/10.1371/journal.pone.0107201

Wojtania, A., Gabryszewska, E., & Podwyszyńska, M. (2011). The effect of growth regulators and sucrose concentration on in vitro propagation of Camellia japonica L. Propagation of Ornamental Plants, 11(4), 177–183.

Yang, C., Liu, X., Chen, Z., Lin, Y., & Wang, S. (2016). Comparison of oil content and fatty acid profile of ten new Camellia oleifera cultivars. Journal of Lipids, 2016, 3982486. https://doi.org/10.1155/2016/3982486

Yang, Q.-H., Wei, X., Zeng, X.-L., Ye, W.-H., Yin, X.-J., Zhang-Ming, W., & Jiang, Y.-S. (2008). Seed biology and germination ecophysiology of Camellia nitidissima. Forest Ecology and Management, 255(1), 113–118. https://doi.org/10.1016/j.foreco.2007.08.028

Zhang, Y., & Liang, K. (2003). An experiment on the cutting propagation of Camellia changii Ye. Guangdong Forestry Science and Technology, 19, 64–65.

Downloads

Published

31-03-2024

Volume and Issues

Section

Natural Sciences and Technology

How to Cite

Le, H. E., Truong, Q. C., Ngo, V. C., Nguyen, P. D., Nguyen, V. P., Do, V. D., Le, T. T. H., Ho, S. H., Nguyen, B. T., Ngo, G. P., & Ho, T. P. (2024). CONSERVATION STATUS AND RESEARCH ON PROPAGATION OF CAMELLIA PIQUETIANA IN LAM DONG PROVINCE, VIETNAM. Dalat University Journal of Science, 14(1), 56-71. https://doi.org/10.37569/DalatUniversity.14.1.1224(2024)