EFFECT OF LOCALLY ISOLATED SCENEDESMUS SP. TN1 ON BIOMASS PRODUCTION AND NUTRIENT REMOVAL FROM COOKING COCOON WASTEWATER: EFFECTS OF INITIAL ALGAL CELL DENSITY AND TEMPERATURE
DOI:
https://doi.org/10.37569/DalatUniversity.15.2.1275(2025)Keywords:
BOD5, COD, Microalgae, Total nitrogen, Total phosphorus.Abstract
Scenedesmus sp. TN1, a local freshwater microalga, was cultivated in cooking cocoon wastewater. The effects of initial algal cell density and temperature on microalgae growth and the removal of total nitrogen (T-N), total phosphorus (T-P), and chemical oxygen demand (COD) were studied. The initial algal cell densities were 5, 10, 15, and 20 mg/l. The experimental temperatures varied from 20 °C to 30 °C. The growth rate increased with the increase in initial algal cell density up to 15 mg/l and was statistically stable thereafter. A similar trend of total nitrogen, total phosphorus, and COD removal efficiency was observed. The optimum temperature for microalgae growth and nutrient removal was 30 °C. After 9 days of cultivation, Scenedesmus sp. TN1 exhibited nutrient removal efficiencies of 88.28%, 82.91%, 92.01%, and 89.16% for T-N, T-P, biological oxygen demand (BOD5), and COD, respectively. The maximum biomass production and nutrient removal efficiencies of Scenedesmus sp. TN1 were observed at cultivation conditions of 15 mg/l initial algal cell density at 30 °C. This study compiled information on the cultivation conditions for cooking cocoon wastewater treatment practices.
Downloads
References
Abdelfattah, A., Ali, S. S., Ramadan, H., El-Aswar, E. I., Eltawab, R., Ho, S. H., Elsamahy, T., Li, S., El-Sheekh, M. M., Schagerl, M., Kornaros, M., & Sun, J. (2023). Microalgae-based wastewater treatment: Mechanisms, challenges, recent advances, and future prospects. Environmental Science and Ecotechnology, 13, 100205. https://doi.org/10.1016/j.ese.2022.100205
Bakuei, N., Amini, G., Najafpour, G. D., Jahanshahi, M., & Mohammadi, M. (2015). Optimal cultivation of Scenedesmus sp. microalgae in a bubble column photobioreactor. Indian Journal of Chemical Technology, 22(1–2), 20–25. http://op.niscair.res.in/index.php/IJCT/article/view/4260
Bashir, I., Lone, F. A., Bhat, R. A., Mir, S. A., Dar, Z. A., & Dar, S. A. (2020). Concerns and threats of contamination on aquatic ecosystems. In K. Hakeem, R. Bhat, & H. Qadri (Eds.), Bioremediation and biotechnology: Sustainable approaches to pollution degradation (pp. 1–26). Springer. https://doi.org/10.1007/978-3-030-35691-0_1
Benedetti, M., Vecchi, V., Barera, S., & Dall’Osto, L. (2018). Biomass from microalgae: The potential of domestication towards sustainable biofactories. Microbial Cell Factories, 17(1), 173. https://doi.org/10.1186/s12934-018-1019-3
Bischoff, H. W., & Bold, H. C. (1963). Phycological studies IV. Some soil algae from Enchanted Rock and related algal species. University of Texas Publication.
Bolognesi, S., Cecconet, D., Callegari, A., & Capodaglio, A. G. (2021). Combined microalgal photobioreactor/microbial fuel cell system: Performance analysis under different process conditions. Environmental Research, 192, 110263. https://doi.org/10.1016/j.envres.2020.110263
Bộ Tài nguyên và Môi trường. (2011). Thông tư Quy định quy chuẩn kỹ thuật quốc gia về môi trường (Circular No. 47/2011/TT-BTNMT). https://vanban.chinhphu.vn/default.aspx?pageid=27160&docid=154119
Bonsang, B., Gros, V., Peeken, I., Yassaa, N., Bluhm, K., Zoellner, E., Sarda-Esteve, R., & Williams, J. (2010). Isoprene emission from phytoplankton monocultures: The relationship with chlorophyll-a, cell volume and carbon content. Environmental Chemistry, 7(6), 554–563. https://doi.org/10.1071/EN09156
Bouterfas, R., Belkoura, M., & Dauta, A. (2002). Light and temperature effects on the growth rate of three freshwater algae isolated from a eutrophic lake. Hydrobiologia, 489, 207–217. https://doi.org/10.1023/A:1023241006464
Brown, R. (1951). The effects of temperature on the durations of the different stages of cell division in the root-tip. Journal of Experimental Botany, 2(1), 96–110. https://doi.org/10.1093/jxb/2.1.96
Bumbak, F., Cook, S., Zachleder, V., Hauser, S., & Kovar, K. (2011). Best practices in heterotrophic high-cell-density microalgal processes: Achievements, potential and possible limitations. Applied Microbiology and Biotechnology, 91, 31–46. https://doi.org/10.1007/s00253-011-3311-6
Capar, G., Aygun, S. S., & Gecit, M. R. (2008). Treatment of silk production wastewaters by membrane processes for sericin recovery. Journal of Membrane Science, 325(2), 920–931. https://doi.org/10.1016/j.memsci.2008.09.020
Cossu, R., Fantinato, G., Pivato, A., & Sandon, A. (2017). Further steps in the standardization of BOD5/COD ratio as a biological stability index for MSW. Waste Management, 68, 16–23. https://doi.org/10.1016/j.wasman.2017.06.035
Cuellar-Bermudez, S. P., Aleman-Nava, G. S., Chandra, R., Garcia-Perez, J. S., Contreras-Angulo, J. R., Markou, G., Muylaert, K., Rittmann, B. E., & Parra-Saldivar, R. (2017). Nutrients utilization and contaminants removal. A review of two approaches of algae and cyanobacteria in wastewater. Algal Research, 24, 438–449. https://doi.org/10.1016/j.algal.2016.08.018
Delgadillo-Mirquez, L., Lopes, F., Taidi, B., & Pareau, D. (2016). Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture. Biotechnology Reports, 11, 18–26. https://doi.org/10.1016/j.btre.2016.04.003
Deng, X., Li, D., Xue, C., Chen, B., Dong, J., Tetteh, P. A., & Gao, K. (2020). Cultivation of Chlorella sorokiniana using wastewaters from different processing units of the silk industry for enhancing biomass production and nutrient removal. Journal of Chemical Technology and Biotechnology, 95(1), 264–273. https://doi.org/10.1002/jctb.6230
Dunn, R. M., & Manoylov, K. M. (2016). The effects of initial cell density on the growth and proliferation of the potentially toxic cyanobacterium Microcystis aeruginosa. Journal of Environmental Protection, 7(9), 1210–1220. https://doi.org/10.4236/jep.2016.79108
El-Sheekh, M., Abomohra, A. E.-F., El-Azim, M. A., & Abou-Shanab, R. (2017). Effect of temperature on growth and fatty acids profile of the biodiesel producing microalga Scenedesmus acutus. Biotechnology, Agronomy, Society and Environment, 21(4), 233–239. https://doi.org/10.25518/1780-4507.15291
Fabiani, C., Pizzichini, M., Spadoni, M., & Zeddita, G. (1996). Treatment of waste water from silk degumming processes for protein recovery and water reuse. Desalination, 105(1–2), 1–9. https://doi.org/10.1016/0011-9164(96)00050-1
Gao, K., Liu, Q., Gao, Z., Xue, C., Qian, P., Dong, J., Gao, Z., & Deng, X. (2021). A dilution strategy used to enhance nutrient removal and biomass production of Chlorella sorokiniana in frigon wastewater. Algal Research, 58, 102438. https://doi.org/10.1016/j.algal.2021.102438
Gao, K., Xue, C., Yang, M., Li, L., Qian, P., Gao, Z., Gao, Z., & Deng, X. (2022). Optimization of light intensity and photoperiod for growing Chlorella sorokiniana on cooking cocoon wastewater in a bubble-column bioreactor. Algal Research, 62, 102612. https://doi.org/10.1016/j.algal.2021.102612
Gupta, D., Agrawal, A., & Rangi, A. (2014). Extraction and characterization of silk sericin. Indian Journal of Fibre and Textile Research, 39(4), 364–372. https://doi.org/10.56042/ijftr.v39i4.3446
Habibi, A., Nematzadeh, G. A., Shariati, F. P., Amrei, H. D., & Teymouri, A. (2019). Effect of light/dark cycle on nitrate and phosphate removal from synthetic wastewater based on BG11 medium by Scenedesmus sp. 3 Biotechnology, 9, 150. https://doi.org/10.1007/s13205-019-1679-7
Hodaifa, G., Martínez, M. E., & Sánchez, S. (2010). Influence of temperature on growth of Scenedesmus obliquus in diluted olive mill wastewater as culture medium. Engineering in Life Sciences, 10(3), 186–275. https://doi.org/10.1002/elsc.201000005
Isiramen, O. E., Bahri, P. A., Moheimani, N. R., Vadiveloo, A., Shayesteh, H., & Parlevliet, D. A. (2022). Temperature regulation schemes for improving biomass productivity and nutrient removal rate in outdoor raceway ponds. Bioresource Technology Reports, 19, 101147. https://doi.org/10.1016/j.biteb.2022.101147
Jebali, A., Acién, F. G., Gómez, C., Fernández-Sevilla, J. M., Mhiri, N., Karray, F., Dhouib, A., Molina-Grima, E., & Sayadi, S. (2015). Selection of native Tunisian microalgae for simultaneous wastewater treatment and biofuel production. Bioresource Technology, 198, 424–430. https://doi.org/10.1016/j.biortech.2015.09.037
Ji, M.-K., Abou-Shanab, R. A. I., Hwang, J.-H., Timmes, T. C., Kim, H.-C., Oh, Y.-K., & Jeon, B.-H. (2013). Removal of nitrogen and phosphorus from piggery wastewater effluent using the green microalga Scenedesmus obliquus. Journal of Environmental Engineering, 139(9), 1198–1205. https://doi.org/10.1061/(asce)ee.1943-7870.0000726
Juan, P., Kai, Y., Jian Ping, Y., Guang Xia, C., Min, X., Chou Fei, W., & Jiang Hai, W. (2012). Characterization of a newly isolated green microalga Scenedesmus sp. as a potential source of biodiesel. African Journal of Biotechnology, 11(94), 16083–16094. https://doi.org/10.5897/ajb12.1319
Kabir, M., Hoseini, S. A., Ghorbani, R., & Kashiri, H. (2017). Performance of microalgae Chlorella vulgaris and Scenedesmus obliquus in wastewater treatment of gomishan (Golestan-Iran) shrimp farms. AACL Bioflux, 10(3), 622–632. https://www.cabidigitallibrary.org/doi/pdf/10.5555/20173236776
Kong, Q. X., Li, L., Martinez, B., Chen, P., & Ruan, R. (2010). Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Applied Biochemistry and Biotechnology, 160(1), 9–18. https://doi.org/10.1007/s12010-009-8670-4
Korozi, E., Kefalogianni, I., Tsagou, V., Chatzipavlidis, I., Markou, G., & Karnaouri, A. (2023). Evaluation of growth and production of high-value-added metabolites in Scenedesmus quadricauda and Chlorella vulgaris grown on crude glycerol under heterotrophic and mixotrophic conditions using monochromatic light-emitting diodes (LEDs). Foods, 12(16), 3068. https://doi.org/10.3390/foods12163068
Latiffi, N. A. A., Mohamed, R. M. S. R., Apandi, N. M., & Tajuddin, R. M. (2017). Experimental assessment on effects of growth rates microalgae Scenedesmus sp. in different conditions of pH, temperature, light intensity and photoperiod. Key Engineering Materials, 744, 546–551. https://doi.org/10.4028/www.scientific.net/KEM.744.546
Lau, P. S., Tam, N. F. Y., & Wong, Y. S. (1996). Wastewater nutrients removal by Chlorella vulgaris: Optimization through acclimation. Environmental Technology, 17(2), 183–189. https://doi.org/10.1080/09593331708616375
Li, D., Amoah, P. K., Chen, B., Xue, C., Hu, X., Gao, K., & Deng, X. (2019). Feasibility of growing Chlorella sorokiniana on cooking cocoon wastewater for biomass production and nutrient removal. Applied Biochemistry and Biotechnology, 188, 663–676. https://doi.org/10.1007/s12010-018-02942-7
Li, G., Xiao, W., Yang, T., & Lyu, T. (2023). Optimization and process effect for microalgae carbon dioxide fixation technology applications based on carbon capture: A comprehensive review. C Journal of Carbon Research, 9(1), 35. https://doi.org/10.3390/c9010035
Li, L., Gao, K., Yang, M., Zheng, Q., Zhang, M., & Deng, X. (2023). Challenges and potential solutions of microalgae-based systems for wastewater treatment and resource recovery. Frontiers in Bioengineering and Biotechnology, 11, 1210228. https://doi.org/10.3389/fbioe.2023.1210228
Li, S., Li, X., & Ho, S. H. (2022). How to enhance carbon capture by evolution of microalgal photosynthesis? Separation and Purification Technology, 291, 120951. https://doi.org/10.1016/j.seppur.2022.120951
Lima, S., Villanova, V., Richiusa, M., Grisafi, F., Scargiali, F., & Brucato, A. (2019). Pollutants removal from municipal sewage by means of microalgae. Chemical Engineering Transactions, 74, 1243–1248. https://doi.org/10.3303/CET1974208
Lin, L., Yang, H., & Xu, X. (2022). Effects of water pollution on human health and disease heterogeneity: A review. Frontiers in Environmental Science, 10, 880246. https://doi.org/10.3389/fenvs.2022.880246
Lürling, M. (2003). Phenotypic plasticity in the green algae Desmodesmus and Scenedesmus with special reference to the induction of defensive morphology. Annales de Limnologie, 39(2), 85–101. https://doi.org/10.1051/limn/2003014
Luu, T. N., Alsafra, Z., Corato, A., Corsaro, D., Le, H. A., Eppe, G., & Remacle, C. (2020). Isolation and characterization of two microalgal isolates from Vietnam with potential for food, feed, and biodiesel production. Energies, 13(4), 898. https://doi.org/10.3390/en13040898
Mondal, M., Trivedy, K., & Nirmal Kumar, S. (2007). The silk proteins, sericin and fibroin in silkworm, Bombyx mori Linn.,–A review. Caspian Journal of Environmental Sciences, 5(2), 63–76. https://cjes.guilan.ac.ir/article_988_6806c5f5fde4c51166120520c1faeb5b.pdf
Moreno Osorio, J. H., Pinto, G., Pollio, A., Frunzo, L., Lens, P. N. L., & Esposito, G. (2019). Start-up of a nutrient removal system using Scenedesmus vacuolatus and Chlorella vulgaris biofilms. Bioresources and Bioprocessing, 6, 27. https://doi.org/10.1186/s40643-019-0259-3
Morillas-España, A., Lafarga, T., Sánchez-Zurano, A., Acién-Fernández, F. G., & González-López, C. (2022). Microalgae based wastewater treatment coupled to the production of high value agricultural products: Current needs and challenges. Chemosphere, 291, 132968. https://doi.org/10.1016/j.chemosphere.2021.132968
Morillas-España, A., Lafarga, T., Sánchez-Zurano, A., Acién-Fernández, F. G., Rodríguez-Miranda, E., Gómez-Serrano, C., & González-López, C. V. (2021). Year-long evaluation of microalgae production in wastewater using pilot-scale raceway photobioreactors: Assessment of biomass productivity and nutrient recovery capacity. Algal Research, 60, 102500. https://doi.org/10.1016/j.algal.2021.102500
Nguyen, M. T., Nguyen, T. P., Pham, T. H., Duong, T. T., Do, M. V., Trinh, T. V., Nguyen, Q. T. X., & Trinh, V. M. (2022). Removal of nutrients and COD in wastewater from Vietnamese piggery farm by the culture of Chlorella vulgaris in a pilot-scaled membrane photobioreactor. Water, 14(22), 3645. https://doi.org/10.3390/w14223645
Okcu, G. D. (2019). The impact of nitrogen starvation on the dynamics of lipid and biomass production in Scenedesmus sp. Environmental Research and Technology, 2(3), 158–170. https://doi.org/10.35208/ert.553536
Osundeko, O., Dean, A. P., Davies, H., & Pittman, J. K. (2014). Acclimation of microalgae to wastewater environments involves increased oxidative stress tolerance activity. Plant and Cell Physiology, 55(10), 1848–1857. https://doi.org/10.1093/pcp/pcu113
Pawlowski, L. (1994). [Review of the book Standard methods for the examination of water and wastewater, 18th edition, A. E. Greenberd, L. S. Clesceri, & A. D. Eaton (Eds.)]. Science of the Total Environment, 142(3), 227–228. https://doi.org/10.1016/0048-9697(94)90332-8
Pham, T. L., & Bui, M. H. (2020). Removal of nutrients from fertilizer plant wastewater using Scenedesmus sp.: Formation of bioflocculation and enhancement of removal efficiency. Journal of Chemistry, 2020, 8094272. https://doi.org/10.1155/2020/8094272
Plöhn, M., Spain, O., Sirin, S., Silva, M., Escudero-Oñate, C., Ferrando-Climent, L., Allahverdiyeva, Y., & Funk, C. (2021). Wastewater treatment by microalgae. Physiologia Plantarum, 173(2), 568–578. https://doi.org/10.1111/ppl.13427
Ruiz-Martínez, A., Serralta, J., Seco, A., & Ferrer, J. (2015). Effect of temperature on ammonium removal in Scenedesmus sp. Bioresource Technology, 191, 346–349. https://doi.org/10.1016/j.biortech.2015.05.070
Russel, M., Meixue, Q., Alam, M. A., Lifen, L., Daroch, M., Blaszczak-Boxe, C., & Kumar Gupta, G. (2020). Investigating the potentiality of Scenedesmus obliquus and Acinetobacter pittii partnership system and their effects on nutrients removal from synthetic domestic wastewater. Bioresource Technology, 299, 122571. https://doi.org/10.1016/j.biortech.2019.122571
Sacristán de Alva, M., Luna-Pabello, V. M., Cadena, E., & Ortíz, E. (2013). Green microalga Scenedesmus acutus grown on municipal wastewater to couple nutrient removal with lipid accumulation for biodiesel production. Bioresource Technology, 146, 744–748. https://doi.org/10.1016/j.biortech.2013.07.061
Saranya, D., & Shanthakumar, S. (2020). Effect of culture conditions on biomass yield of acclimatized microalgae in ozone pre-treated tannery effluent: A simultaneous exploration of bioremediation and lipid accumulation potential. Journal of Environmental Management, 273, 111129. https://doi.org/10.1016/j.jenvman.2020.111129
Silambarasan, S., Logeswari, P., Sivaramakrishnan, R., Incharoensakdi, A., Kamaraj, B., & Cornejo, P. (2023). Scenedesmus sp. strain SD07 cultivation in municipal wastewater for pollutant removal and production of lipid and exopolysaccharides. Environmental Research, 218, 115051. https://doi.org/10.1016/j.envres.2022.115051
Srimongkol, P., Sangtanoo, P., Songserm, P., Watsuntorn, W., & Karnchanatat, A. (2022). Microalgae-based wastewater treatment for developing economic and environmental sustainability: Current status and future prospects. Frontiers in Bioengineering and Biotechnology, 10, 904046. https://doi.org/10.3389/fbioe.2022.904046
Tran, D. N., Le, P. T., Ngo, T. D., Nguyen, K. T., & Pham, L. A. (2022). The roles of microalgae and bacteria in wastewater treatment. Vietnam Journal of Biotechnology, 20(3), 573–588. https://doi.org/10.15625/1811-4989/16645
Tran, N. Q. A., Vo, V. M., Tran, N. S., & Trinh, D. M. (2020). Isolation of some microalgae strains belonging to the family Scenedesmaceas (Chlorophyta) in freshwater bodies in central Vietnam and investigation into their biological characteristics. The University of Danang, Journal of Science and Technology, 18(6), 67–71. https://doi.org/10.31130/jst-ud2020-231e
Tran, T. K., Truong, N. T., & Nguyen, N. H. (2019). Ability of Chlorella vulgaris algae for nutrients removal in domestic wastewater and its collection by ferrate. Journal of Vietnamese Environment, 11(1), 27–32. https://doi.org/10.13141/jve.vol11.no1.pp27-32
Trinh, T. L., Nguyen, T. T. H., Nguyen, T. T. K., Nguyen, T. B. H., Nguyen, H. N., Nguyen, T. B. T., Nguyen, N. P. T., & Nguyen, H. Y. N. (2022). Using waste mineral water from RO column to culture Chlorella vulgaris algae biomass. Livestock Research for Rural Development, 34(8), 71. https://www.lrrd.org/lrrd34/8/3471lan.html
Voltolina, D., Gómez-Villa, H., & Correa, G. (2005). Nitrogen removal and recycling by Scenedesmus obliquus in semicontinuous cultures using artificial wastewater and a simulated light and temperature cycle. Bioresource Technology, 96(3), 359–362. https://doi.org/10.1016/j.biortech.2004.04.004
Walter, W. G. (1961). [Review of the book Standard methods for the examination of water and wastewater, 18th edition]. American Journal of Public Health, 51(6), 940. https://doi.org/10.2105/ajph.51.6.940-a
Wang, L., Wang, H., Chen, X., Xu, Y., Zhou, T., Wang, X., Lu, Q., & Ruan, R. (2018). Using Chlorella vulgaris to treat toxic excess sludge extract, and identification of its response mechanism by proteomics approach. Bioresource Technology, 253, 188–196. https://doi.org/10.1016/j.biortech.2018.01.039
Wong, Y. K., Yung, K. K. L., Tsang, Y. F., Xia, Y., Wang, L., & Ho, K. C. (2015). Scenedesmus quadricauda for nutrient removal and lipid production in wastewater. Water Environment Research, 87(12), 2037–2044. https://doi.org/10.2175/106143015x14362865227193
Xu, Q., Yang, L., Yang, W., Bai, Y., Hou, P., Zhao, J., Zhou, L., & Zuo, Z. (2017). Volatile organic compounds released from Microcystis flos-aquae under nitrogen sources and their toxic effects on Chlorella vulgaris. Ecotoxicology and Environmental Safety, 135, 191–200. https://doi.org/10.1016/j.ecoenv.2016.09.027
Xue, C., Gao, K., Qian, P., Dong, J., Gao, Z., Liu, Q., Chen, B., & Deng, X. (2021). Cultivation of Chlorella sorokiniana in a bubble-column bioreactor coupled with cooking cocoon wastewater treatment: Effects of initial cell density and aeration rate. Water Science & Technology, 83(11), 2615–2628. https://doi.org/10.2166/wst.2021.154
Yaakob, M. A., Mohamed, R. M. S. R., Al-Gheethi, A., Ravishankar, G. A., & Ambati, R. R. (2021). Influence of nitrogen and phosphorus on microalgal growth, biomass, lipid, and fatty acid production: An overview. Cells, 10(2), 393. https://doi.org/10.3390/cells10020393
Yahya, L., Harun, R., & Abdullah, L. C. (2020). Screening of native microalgae species for carbon fixation at the vicinity of Malaysian coal-fired power plant. Scientific Reports, 10, 22355. https://doi.org/10.1038/s41598-020-79316-9
Yamashita, T., & Yamamoto-Ikemoto, R. (2014). Nitrogen and phosphorus removal from wastewater treatment plant effluent via bacterial sulfate reduction in an anoxic bioreactor packed with wood and iron. International Journal of Environmental Research and Public Health, 11(9), 9835–9853. https://doi.org/10.3390/ijerph110909835
Ye, C., Yang, Y., Xu, Q., Ying, B., Zhang, M., Gao, B., Ni, B., Yakefu, Z., Bai, Y., & Zuo, Z. (2018). Volatile organic compound emissions from Microcystis aeruginosa under different phosphorus sources and concentrations. Phycological Research, 66(1), 15–22. https://doi.org/10.1111/pre.12201
Ye, S., Gao, L., Zhao, J., An, M., Wu, H., & Li, M. (2020). Simultaneous wastewater treatment and lipid production by Scenedesmus sp. HXY2. Bioresource Technology, 302, 122903. https://doi.org/10.1016/j.biortech.2020.122903
Yirgu, Z., Leta, S., Hussen, A., & Khan, M. M. (2020). Nutrient removal and carbohydrate production potential of indigenous Scenedesmus sp. grown in anaerobically digested brewery wastewater. Environmental Systems Research, 9, 40. https://doi.org/10.1186/s40068-020-00201-5
Zhang, Y., Ren, L., Chu, H., Zhou, X., Yao, T., & Zhang, Y. (2019). Optimization for Scenedesmus obliquus cultivation: The effects of temperature, light intensity and pH on growth and biochemical composition. Microbiology and Biotechnology Letters, 47(4), 614–620. https://doi.org/10.4014/mbl.1906.06005
Zhang, Y. Q. (2002). Applications of natural silk protein sericin in biomaterials. Biotechnology Advances, 20(2), 91–100. https://doi.org/10.1016/S0734-9750(02)00003-4
Zuo, Z., Zhu, Y., Bai, Y., & Wang, Y. (2012). Acetic acid-induced programmed cell death and release of volatile organic compounds in Chlamydomonas reinhardtii. Plant Physiology and Biochemistry, 51, 175–184. https://doi.org/10.1016/j.plaphy.2011.11.003
Downloads
Published
Volume and Issues
Section
Copyright & License
Copyright (c) 2024 Le Thi Anh Tu

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.