SEASONAL VARIATION OF IN SITU PHYTOPLANKTON PHOTOSYNTHETIC PROPERTIES IN NHA TRANG BAY
DOI:
https://doi.org/10.37569/DalatUniversity.15.2.1357(2025)Keywords:
Fm, Fo, Fv/Fm, Physiological status, Phytoplankton photosynthetic efficiency.Abstract
Photosynthetic properties are essential for the evaluation of phytoplankton photosynthetic efficiency as well as their physiological status in different waters. The present study measured in situ minimum and maximum fluorescence (Fo, Fm), variable fluorescence (Fv), and photosynthetic efficiency (Fv/Fm) in Nha Trang Bay to estimate seasonal phytoplankton community responses to different environmental conditions. Photosynthetic efficiency of in situ phytoplankton in Nha Trang Bay varied from 0.03 to 0.55 among stations and sampling times. Stations near the shore (Cape Chut) and estuary had higher Fv/Fm values than offshore stations. Seasonal and spatial variation of photosynthetic efficiency along the transect from the river mouth to the open ocean reflected the impact of river inputs on phytoplankton communities. In situ measurements indicate the impacts of complex environmental conditions in Nha Trang Bay (e.g., light intensity and nutrients) on the physiological status and photosynthetic efficiency of phytoplankton.
Downloads
References
Antal, T. K., Venediktov, P. S., Konev, Y. N., Matorin, D. N., Hapter, R., & Rubin, A. B. (1999). Assessment of vertical profiles of photosynthesis of phytoplankton by fluorescent method. Oceanologia, 39(2), 314–320. https://library.biophys.msu.ru/matorin/3392.pdf
Antal, T. K., Venediktov, P. S., Matorin, D. N., Ostrowska, M., Woźniak, B., & Rubin, A. B. (2001). Measurement of phytoplankton photosynthesis rate using a pump-and-probe fluorometer. Oceanologia, 43(3), 291–313. https://www.iopan.gda.pl/oceanologia/433antal.pdf
APHA. (2005). Standard methods for the examination of water and wastewater. American Public Health Association/American Water Works Association/Water Environment Federation.
Cullen, J. J., & Renger, E. H. (1979). Continuous measurement of the DCMU-induced fluorescence response of natural phytoplankton populations. Marine Biology, 53, 13–20. https://doi.org/10.1007/BF00386524
Doan, N. H., Hoang, T. D., Pham, H. T., & L. Nguyen, N. (2012). Primary production and nutrient dynamic of tropical estuaries, South Central Viet Nam [Unplublished manuscript]. CLIMEEViet.
Falkowski, P. G., Koblfzek, M., Gorbunov, M., & Kolber, Z. (2004). Development and application of variable chlorophyll fluorescence techniques in marine ecosystems. In G. C. Papageorgiou, & Govindjee (Eds.), Chlorophyll a fluorescence: A signature of photosynthesis (pp. 757–778). Springer. https://doi.org/10.1007/978-1-4020-3218-9_30
Falkowski, P. G., & Kolber, Z. (1995). Variations in chlorophyll fluorescence yields in phytoplankton in the world oceans. Australian Journal of Plant Physiology, 22(2), 341–355. https://doi.org/10.1071/PP9950341
Fujiki, T., Matsumoto, K., Saino, T., Wakita, M., & Watanabe, S. (2013). Distribution and photo-physiological condition of phytoplankton in the tropical and subtropical North Pacific. Journal of Oceanography, 69(1), 35–43. https://doi.org/10.1007/s10872-012-0153-5
Il’yash, L. V., Matorin, D. N., Kol'tsova, T. I., & Sham, H. H. (2004). Spatial distribution and daily dynamics of phytoplankton in Nhatrang Bay of the South China Sea. Oceanology, 44(2), 219–229. https://library.biophys.msu.ru/matorin/3399.pdf
Il’yash, L. V., & Matorin, D. N. (2007). Features of the spatial distribution of phytoplankton in Nhatrang Bay of the South China Sea during the rainy season. Oceanology, 47, 788–796. https://doi.org/10.1134/S0001437007060045
Jeffrey, S. W., & Humphrey, G. F. (1975). New spectrophotometric equations for determining chlorophyll a, b, c1 and c2. Biochemie und Physiologie der Pflanzen, 167(2), 191–194. https://doi.org/10.1016/S0015-3796(17)30778-3
Juneau, P., & Harrison, P. J. (2005). Comparison by PAM fluorometry of photosynthetic activity of nine marine phytoplankton grown under identical conditions. Photochemistry and Photobiology, 81(3), 649–653. https://doi.org/10.1111/j.1751-1097.2005.tb00239.x
Khanh Hoa Statistics Office. (2013). Niên giám thống kê Khánh Hòa 2012 [Khanh Hoa Statistical Yearbook 2012] [Unpublished manuscript].
Kirchman, D. L. (2011). Processes in microbial ecology (1st ed.). Oxford Academic. https://doi.org/10.1093/acprof:oso/9780199586936.001.0001
Kirk, J. T. O. (2011). Light & photosynthesis in aquatic ecosystems. Cambridge University Press.
Kolber, Z., & Falkowski, P. G. (1993). Use of active fluorescence to estimate phytoplankton photosynthesis in situ. Limnology and Oceanography, 38(8), 1646–1665. https://doi.org/10.4319/lo.1993.38.8.1646
Li, J., Gao, Y., Bao, Y., Gao, X., & Glibert, P. M. (2023). Summer phytoplankton photosynthetic characteristics in the Changjiang River Estuary and the adjacent East China Sea. Frontiers in Marine Science, 10, 1111557. https://doi.org/10.3389/fmars.2023.1111557
Manzello, D., Warner, M., Stabenau, E., Hendee, J., Lesser, M., & Jankulak, M. (2009). Remote monitoring of chlorophyll fluorescence in two reef corals during the 2005 bleaching event at Lee Stocking Island, Bahamas. Coral Reefs, 28, 209–214. https://doi.org/10.1007/s00338-008-0455-7
Parkhill, J. P., Maillet, G., & Cullen, J. J. (2001). Fluorescence-based maximal quantum yield for PSII as a diagnostic of nutrient stress. Journal of Phycology, 37(4), 517–529. https://doi.org/10.1046/j.1529-8817.2001.037004517.x
Phan, M. T., Nguyen, T. D. H., & Pham, T. P. T. (2016). Variation of water quality in Nha Trang bay. Vietnam Journal of Marine Science and Technology, 16(2), 144–150. https://doi.org/10.15625/1859-3097/16/2/7235
Samuelsson, G., & Öquist, G. (1977). A method for studying photosynthetic capacities of unicellular algae based on in vivo chlorophyll fluorescence. Physiologia Plantarum, 40(4), 315–319. https://doi.org/10.1111/j.1399-3054.1977.tb04080.x
Schlitzer, R. (2016). Ocean data view [Computer software]. http://odv.awi.de
Singh, A., Thomalla, S. J., Fietz, S., & Ryan-Keogh, T. J. (2022). Spatial and temporal variability of phytoplankton photophysiology in the Atlantic Southern Ocean. Frontiers in Marine Science, 9, 912856. https://doi.org/10.3389/fmars.2022.912856
Suggett, D. J., Moore, C. M., Hickman, A. E., & Geider, R. J. (2009). Interpretation of fast repetition rate (FRR) fluorescence: Signatures of phytoplankton community structure versus physiological state. Marine Ecology Progress Series, 376, 1–19. https://doi.org/10.3354/MEPS07830
Sven, B., Vilenkin, B., Weil, A., Veste, M., Susel, L., & Eshel, A. (1998). Measuring photosynthetic rates in seagrasses by pulse amplitude modulated (PAM) fluorometry. Marine Ecology Progress Series, 174, 293–300. https://doi.org/10.3354/meps174293
Tan, L., Xu, W., He, X., & Wang, J. (2019). The feasibility of Fv/Fm on judging nutrient limitation of marine algae through indoor simulation and in situ experiment. Estuarine, Coastal and Shelf Science, 229, 106411. https://doi.org/10.1016/j.ecss.2019.106411
Thornton, D. C. O. (2012). Primary production in the ocean. In M. Najafpour (Ed.), Advances in photosynthesis–Fundamental aspects (pp. 563–588). Intech. https://cdn.intechopen.com/pdfs/28392/InTech-Primary_production_in_the_ocean.pdf
Tran, T. M. H., Doan, N. H., & Nguyen, N. L. (2022). Ảnh hưởng của một số yếu tố môi trường tới hiệu suất quang hợp của thực vật phù du Vịnh Nha Trang [Impacts of environmental factors on photosynthetic efficiency of phytoplankton in Nha Trang Bay in experimental condition]. In Proceedings of the Biển Đông 2022, Viet Nam (pp. 340–350). Viện Hải dương học. http://tvhdh.vnio.org.vn:8080/xmlui/handle/123456789/20786
Wang, F., Guo, S., Liang, J., & Sun, X. (2024). In situ phytoplankton photosynthetic characteristics and their controlling factors in the eastern Indian Ocean. Marine Pollution Bulletin, 198, 115869. https://doi.org/10.1016/j.marpolbul.2023.115869
Downloads
Published
Volume and Issues
Section
Copyright & License
Copyright (c) 2024 Tran Thi Minh Hue, Doan Nhu Hai

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.