AN APPLICATION OF FUZZY PARTICLE SWARM OPTIMIZATION FOR CUSTOMER ANALYSIS
DOI:
https://doi.org/10.37569/DalatUniversity.7.2.242(2017)Keywords:
Clustering, Fuzzy set, Genetic, Optimal, Swarm.Abstract
This article presents the application of the Fuzzy Particle Swarm Optimization algorithm for analyzing customer needs. Applying Fuzzy Particle Swarm Optimization algorithm to the problem of a US medical device supplier wanting to analyze the needs of 500 hospitals, in the region in terms of, medical equipment and supplies, the needs analysis assisted. The supplier offering the most suitable business strategies for each hospital to achieve higher revenues.Downloads
References
Angeline, P. J. (1995). Adaptive and self-adaptive evolutionary computations. Paper presented at The Computational Intelligence: A Dynamic Systems Perspective, USA.
Aksoy, E. (2006). Clustering with GIS: An attempt to classify Turkish district data. Paper presented at The XXIII FIG Congress, Germany.
Bezdek, J. C. (2013). Pattern recognition with fuzzy objective function algorithms. Berlin, Germany: Springer Science & Business Media.
Biswal, B., Dash, P. K., & Panigrahi, B. K. (2009). Power quality disturbance classification using fuzzy C-means algorithm and adaptive particle swarm optimization. IEEE Transactions on Industrial Electronics, 56(1), 212-220.
Bùi, C. C., & Nguyễn, D. P. (2006). Hệ mờ mạng nơron và ứng dụng. Hà Nội, Việt Nam: NXB Khoa học và Kỹ thuật.
Brimberg, J., Hansen, P., Mladenović, N., & Taillard, E. D. (2000). Improvements and comparison of heuristics for solving the uncapacitated multisource Weber problem. Operations Research, 48(3), 444-460.
Chen, M., & Ludwig, S. A. (2014). Particle swarm optimization based fuzzy clustering approach to identify optimal number of clusters. Journal of Artificial Intelligence and Soft Computing Research, 4(1), 43-56.
Du, M. O., Hansen, P., Jaumard, B., & Mladenovic, N. (1999). An interior point algorithm for minimum sum-of-squares clustering. SIAM Journal on Scientific Computing, 21(4), 1485-1505.
Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. Paper presented at The Sixth International Symposium on IEEE, USA.
Fischetti, M., Lancia, G., & Serafini, P. (2002). Exact algorithms for minimum routing cost trees. Networks, 39(3), 161-173.
Giudici, P., & Passerone, G. (2002). Data mining of association structures to model consumer behavior. Computational Statistics & Data Analysis, 38(4), 533-541.
Greco, S., Matarazzo, B., & Slowinski, R. (1998). A new rough set approach to evaluation of bankruptcy risk. Paper presented at The Operational Tools in the Management of Financial Risks, USA.
Greco, S., Matarazzo, B., & Slowinski, R. (2000). Extension of the rough set approach to multicriteria decision support. INFOR: Information Systems and Operational Research, 38(3), 161-195.
Hall, L. O., Ozyurt, I. B., & Bezdek, J. C. (1999). Clustering with a genetically optimized approach. IEEE Transactions on Evolutionary Computation, 3(2), 103-112.
Hansen, P., & Jaumard, B. (1997). Cluster analysis and mathematical programming. Mathematical Programming, 79(1-3), 191-215.
Hansen, P., & Mladenović, N. (1999). An introduction to variable neighborhood search. Paper presented at Meta-heuristics,USA.
Mehdizadeh, E., & Moghaddam, R. T. (2008). Fuzzy particle swarm optimization algorithm for a supplier clustering problem. Journal of Industrial Engineering, 1(1), 17-24.
Mladenović, N., & Hansen, P. (1997). Variable neighborhood search. Computers & Operations Research, 24(11), 1097-1100.
Pappas, T. N. (1992). An adaptive clustering algorithm for image segmentation. IEEE Transactions on Signal Processing, 40(4), 901-914.
Pang, W., Wang, K. P., Zhou, C. G., & Dong, L. J. (2004). Fuzzy discrete particle swarm optimization for solving traveling salesman problem. Paper presented at Computer and Information Technology Conference, USA.
Richter, F. (2016). Identität, Ethnizität und Nationalismus in Kurdistan. Berlin, Germany: LIT Verlag Münster.
Runkler, T. A., & Bezdek, J. C. (2003). Web mining with relational clustering. International Journal of Approximate Reasoning, 32(2-3), 217-236.
Runkler, T. A., & Katz, C. (2006). Fuzzy clustering by particle swarm optimization. Paper presented at Fuzzy Systems, 2006 IEEE International Conference on IEEE, USA.
Salerno, J. (1997). Using the particle swarm optimization technique to train a recurrent neural model. Paper presented at Tools with Artificial Intelligence, The Ninth IEEE International Conference, USA.
Song, H. S., Kyeong, K. J., & Kim, S. H. (2001). Mining the change of customer behavior in an internet shopping mall. Expert Systems with Applications, 21(3), 157-168.
Stefanowski, J. (2009). Data mining-clustering[PowerPoint slides]. Retrieved from http://www.cs.put.poznan.pl/jstefanowski/sed/DM-7clusteringnew.pdf.
Wang, K. P., Huang, L., Zhou, C. G., & Pang, W. (2003). Particle swarm optimization for traveling salesman problem. Paper presented at Machine Learning and Cybernetics, 2003 International Conference onIEEE, USA.
Weijun, X., Zhiming, W., Wei, Z., & Genke, Y. (2004). A new hybrid optimization algorithm for the job-shop scheduling problem. Paper presented at American Control Conference IEEE, USA.
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353.
Downloads
Published
Volume and Issues
Section
Copyright & License
Copyright (c) 2017 Nguyễn Thị Như Na
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.