USE OF ISOTOPE DILUTION METHOD FOR DETERMINATION OF Ce, Sm, AND Yb ABUNDANCES IN GEOLOGICAL SAMPLES BY ICP-MS

Authors

  • Cao Đông Vũ The Dalat Nuclear Research Institute, Vietnam Atomic Energy Institute, Viet Nam
  • Trương Đức Toàn The Dalat Nuclear Research Institute, Vietnam Atomic Energy Institute, Viet Nam
  • Nguyễn Đăng Khánh Department of Post-graduate Studies, Dalat University, Viet Nam
  • Đỗ Tâm Nhân The Dalat Nuclear Research Institute, Vietnam Atomic Energy Institute, Viet Nam
  • Võ Trần Quang Thái The Dalat Nuclear Research Institute, Vietnam Atomic Energy Institute, Viet Nam
  • Nguyễn Lê Anh The Dalat Nuclear Research Institute, Vietnam Atomic Energy Institute, Viet Nam
  • Nguyễn Việt Đức The Dalat Nuclear Research Institute, Vietnam Atomic Energy Institute, Viet Nam
  • Nguyễn Giằng The Dalat Nuclear Research Institute, Vietnam Atomic Energy Institute, Viet Nam
  • Nguyễn Trọng Ngọ The Dalat Nuclear Research Institute, Vietnam Atomic Energy Institute, Viet Nam

DOI:

https://doi.org/10.37569/DalatUniversity.9.2.517(2019)

Keywords:

ICP-MS, Isotope dilution (ID), Rare earth elements (REEs).

Abstract

In this study, we used the ID-ICP-MS technique to determine the concentration of Ce (LREE), Sm (MREE), and Yb (HREE) in three geological, certified reference materials: BHVO-2, BCR-2, and NIST 2711a. Calibration experiments using the ID technique, such as concentration calibration and relative isotopic abundance calibration for spike solutions, were conducted experimentally. In addition, mass spectral interferences and mass fractionation in ICP-MS were also investigated, corrected and discussed. For the first time in Vietnam, ID-ICP-MS has been successfully applied to determine three rare earth elements Ce, Sm, and Yb in basaltic geological samples (BHVO-2 and BCR-2) with high accuracy and reproducibility (<5%). For NIST SRM 2711a with soil matrix, the results of the accuracy and reproducibility were approximately 10%, except for the result obtained for Ce, with a dilution factor of 3000, which was 15.4% lower than the published value.

Downloads

Download data is not yet available.

References

Anders, E., & Grevesse, N. (1989). Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta, 53, 197-214.

Bayon, G., Barrat, A. J., Etoubleau, J., Benoit, M., Bollinger, C., & Révillon, S. (2009). Determination of rare earth elements, Sc, Y, Zr, Ba, Hf, and Th in geological samples by ICP-MS after Tm addition and alkaline fusion. Geostand. Geoanal. Res., 33(1), 51-62.

Cao, D. V., Sucgang, R., Tran, Q. T., Ho, V. D., Shirai, N., & Ebihara, M. (2017). Measurements of rare earth element and other element mass fractions in environmental reference materials (NIST SRM 1646a, NIST SRM 1400, IAEA‐395, and IAEA‐450) by INAA, ICP‐AES, and ICP‐MS. Geostand. Geoanal. Res., 41(2), 303-315.

de Laeter, J. R., Böhlke, J. K., de Bièvre, B., Hidaka, H., Peiser, H. S., Rosman, K. J. R., & Taylor, P. D. P. (2003). Atomic weights of the elements: Review 2000. Pure Appl. Chem., 75(6), 683-800.

Evensen, N. M., Hamilton, P. J., & O’Nions, R. K. (1978). Rare-earth abundances in chondritic meteorites. Geochim. Cosmochim. Acta, 42, 1199-1212.

Heumann, K. G., Gallus, S. M., Rädlinger, G., & Vogl, J. (1998). Precision and accuracy in isotope ratio measurements by plasma source mass spectrometry. J. Anal. At. Spectrom., 13, 1001-1008.

Kent, A. J. R, Jacobsen, B., Peate, D. W., Waight, T. E., & Baker, J. A. (2004). Isotope dilution MC-ICP-MS rare earth element analysis of geochemical reference materials NIST SRM 610, NIST SRM 612, NIST SRM 614, BHVO-2G, BHVO-2, BCR-2G, JB-2, WS-E, W-2, AGV-1, and AGV-2. Geostand. Geoanal. Res., 28(3), 417-429.

Nakamura, N. (1974). Determination of REE, Ba, Fe, Mg, Na, and K in carbonaceous and ordinary chondrites. Geochim. Cosmochim. Acta, 38, 757-775.

Plumlee, G. (1998a). Basalt, Hawaiian volcanic observatory, BHVO-2. Retrieved from http://minerva.union.edu/hollochk/icp-ms/srm/usgs-bhvo2.pdf

Plumlee, G. (1998b). Basalt, Columbia River, BCR-2. Retrieved from https://crustal.usgs.gov/geochemical_reference_standards/pdfs/basaltbcr2.pdf.

Shinotsuka, K., Hidaka, H., & Ebihara, M. (1995). Detailed abundances of rare earth elements, thorium and uranium in chondritic meteorites: An ICP-MS study. Meteoritics, 30, 694-699.

Shinotsuka, K., & Ebihara, M. (1997) Precise determination of rare earth elements, thorium and uranium in chondritic meteorite by inductively coupled plasma mass spectrometry - a comparative study with radiochemical neutron activation analysis. Anal. Chim. Acta, 33(8), 237-246.

Shirai, N., Toktaganov, M., Takahashi, H., Yokozuka, Y., Sekimoto, S., Ebihara, M. (2015). Multielemental analysis of Korean geological reference samples by INAA, ICP-AES, and ICP-MS. J. Radioanal. Nucl. Chem., 303, 1367-1374.

Tristan, C. C. R., Jeroen, E. S., Jerome, C., Frederic, C., François, L., Geraldo, B., Patrick, S., & Catherine, J. (2013). Rare earth element analysis in natural waters by multiple isotope dilution - sector field ICP-MS. J. Anal. At. Spectrom., 28, 573-584.

Vogl, J. (2005). Calibration strategies and quality assurance. In M. N. Simon (Eds.), Inductively coupled plasma mass spectrometry handbook (pp. 147-181). Florida, USA: CRC Press.

Wise, A. S., & Watters, L. R. (2009). Certificate of Analysis NIST SRM 2711a. Washington, USA: Department of Commercer.

Published

06-08-2019

Volume and Issues

Section

Natural Sciences and Technology

How to Cite

Vũ, C. Đông, Toàn, T. Đức, Khánh, N. Đăng, Nhân, Đỗ T., Thái, V. T. Q., Anh, N. L., Đức, N. V., Giằng, N., & Ngọ, N. T. (2019). USE OF ISOTOPE DILUTION METHOD FOR DETERMINATION OF Ce, Sm, AND Yb ABUNDANCES IN GEOLOGICAL SAMPLES BY ICP-MS. Dalat University Journal of Science, 9(2), 49-69. https://doi.org/10.37569/DalatUniversity.9.2.517(2019)