PHYTOSTEROLS, A TRITERPENOID, AND A LONG CHAIN ALCOHOL ISOLATED FROM THE LEAVES OF Camellia dalatensis Luong, Tran & Hakoda

Authors

  • Nguyễn Thị Tố Uyên The Faculty of Chemistry, Dalat University, Viet Nam
  • Trần Thị Thanh Phúc The Faculty of Chemistry, Dalat University, Viet Nam
  • Lương Văn Dũng The Faculty of Biology, Dalat University, Viet Nam
  • Trịnh Thị Điệp The Faculty of Chemistry, Dalat University, Viet Nam

DOI:

https://doi.org/10.37569/DalatUniversity.9.2.531(2019)

Keywords:

1-tricosanol, Camellia dalatensis, Oleanolic acid, Spinasterol, Stigmasterol.

Abstract

By various chromatographic methods, five compounds including spinasterol, stigmasterol,  oleanolic acid, docosane, and 1-tricosanol were isolated from the ethanol extract of the leaves of Camellia dalatensis Luong, Tran, & Hakoda. Their structures were elucidated by extensive spectroscopic methods including 1D-NMR, 2D-NMR, ESI-MS, and IR. This is the first report of these compounds from this species.

Downloads

Download data is not yet available.

References

Anjoo, K., & Ajay, K. S. (2011). Isolation of stigmasterol and -sitosterol from petroleum ether extract of aerial parts of Ageratum conyzoides (Asteraceae), International Journal of Pharmacy and Pharmaceutical Sciences, 3, 94-96.

Antwi, A. O., Obiri, D. D., Osafo, N., Forkuo, A. D., & Essel, L. B. (2017). Stigmasterol inhibits lipopolysaccharide-induced innate immune responses in murine models. International Immunopharmacology, 53, 105-113.

Ayeleso, T. B., Matumba, M. G., & Mukwevho, E. (2017). Oleanolic acid and its derivatives: Biological activities and therapeutic potential in chronic diseases. Molecules, 22(11), 1-16.

Balentine, D. A. (1997). Introduction: Tea and health. Critical Reviews in Food Science and Nutrition, 8, 691-669.

Brusco, I, Camponogara, C., Carvalho, F. B., Schetinger, M. R. C., Oliveira, M. S., Trevisan, G., Ferreira, J., & Oliveira, S. M. (2017). α-Spinasterol: A COX inhibitor and a transient receptor potential vanilloid 1 antagonist presents an antinociceptive effect in clinically relevant models of pain in mice. British Journal of Pharmacology, 174(23), 4247-4262.

Consolacion, Y. R., Richard, F. G. , Mitzell, A. , Vernadette, T., & Chien, C. S. (2014). Triterpenes and sterols from Samanea saman. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 5(4), 1501-1507.

Dai, L., Li, J. L., Liang, X. Q., Li, L., Feng, Y., Liu, H. Z., & Zhang, L. T. (2016). Flowers of Camellia nitidissima cause growth inhibition, cell-cycle dysregulation and apoptosis in a human esophageal squamous cell carcinoma cell line. Molecular Medicine Reports, 14(2), 1117-1122.

Daiane, M., Lillian, L. C., Daniela, F. R., Kahlil, S. S., Pedro, E. A., Silva, A. B., & Cecilia, V. N. (2013). Triterpenes and the antimycobacterial activity of Duroia macrophylla huber (Rubiaceae). BioMed Research International, 2013, 1-8.

Hara, Y., Luo, S. J., Wickremashinghe, R. L., & Yamanishi, T. V. (1995). Chemical composition of tea. Food Reviews International, 11(3), 435-456.

Higdon, J. V.,  Frei, B. (2003). Tea catechins and polyphenols: Health effects, metabolism, and antioxidant functions. Critical Reviews in Food Science and Nutrition, 43(1), 89-143.

Kangsamaksin, T., Chaithongyot, S., Wootthichairangsan, C., Hanchaina, R., Tangshewinsirikul, C., & Svasti, J. (2017). Lupeol and stigmasterol suppress tumor angiogenesis and inhibit cholangiocarcinoma growth in mice via downregulation of tumor necrosis factor-α. PLoS One, 12(12), 1-16.

Lambert, J. D., & Elias, R. J. (2010). The antioxidant and pro-oxidant activities of green tea polyphenols: A role in cancer prevention. Archives of Biochemistry and Biophysics, 501, 65-72.

Liu, Q., Liu, H., Zhang, L., Guo, T., Wang, P., Geng, M., & Li, Y. (2013). Synthesis and antitumor activities of naturally occurring oleanolic acid triterpenoid saponins and their derivatives. European Journal of Medicinal Chemistry, 64, 1-15.

Maron, D. J., Lu, G. P., Cai, N. S., Wu, Z. G., Li, Y. H., Zhu, J. Q., Jin, X. J., Wouters, B. C., Zhao, J., & Chen, H. (2003). Cholesterol-lowering effect of a theaflavin-enriched green tea extract: A randomized controlled trial. The Archives of Internal Medicine, 163(12), 1448-1453.

Meneses, S. S., Navarro, N. M., Ruiz, B. E., Del, T. S., Jiménez, E. M., & Robles, Z. R. E. (2017). Antiproliferative activity of spinasterol isolated of Stegnosperma halimifolium. Saudi Pharmaceutical Journal, 25(8), 1137-1143.

Panawan, S., Watcharapong, C., Sugunya, M., Suwaporn, L., Somsuda, T., & Vijittra, L. (2015). Structures of phytosterols and triterpenoids with potential anti-cancer activity in bran of black non-glutinous rice. Nutrients, 7, 1672-1687.

Sedky, N. K., El-Gammal, Z. H., Wahba, A. E., Mosad, E., Waly, Z. Y., El-Fallal, A. A., Arafa, R. K., & El-Badri, N. (2018). The molecular basis of cytotoxicity of α-spinasterol from Ganoderma resinaceum: Induction of apoptosis and overexpression of p53 in breast and ovarian cancer cell lines. Journal of Cellular Biochemistry, 119(5), 3892-3902.

Serghei, A., Kinza, S., Lydia, W., & Heike, P. K. (2018). Effect of alkane chain length on crystallization in emulsions during supercooling in quiescent systems and under mechanical stress. Processes, 6(1), 1-6.

Yokozawa, T., Chung, H., Young, H., Li, Q., & Oura, H. (1996). Effectiveness of green tea tannin on rats with chronic renal failure. Bioscience, Biotechnology, and Biochemistry, 60, 1000-1005.

Published

25-06-2019

Volume and Issues

Section

Natural Sciences and Technology

How to Cite

Uyên, N. T. T., Phúc, T. T. T., Dũng, L. V., & Điệp, T. T. (2019). PHYTOSTEROLS, A TRITERPENOID, AND A LONG CHAIN ALCOHOL ISOLATED FROM THE LEAVES OF Camellia dalatensis Luong, Tran & Hakoda. Dalat University Journal of Science, 9(2), 70-80. https://doi.org/10.37569/DalatUniversity.9.2.531(2019)