APPLICATION OF MACHINE LEARNING ALGORITHMS TO EVALUATE THE UCI DATABASE IN THE CLASSIFICATION OF AUTISM SPECTRUM DISORDERS
DOI:
https://doi.org/10.37569/DalatUniversity.10.3.649(2020)Keywords:
Autism spectrum disorder, Machine learning algorithms, Screening autism spectrum disorder.Abstract
In this article, we present the results of an evaluation of the autism spectrum disorder classification (ASD) of children in the UCI database. We evaluated the data set with the SVM and Random Forest algorithms and also investigated the Decision Tree, Logistic Regression, K-Nearest-Neighbors, Naïve Bayes, and Multi-Layer Perceptron (MLP) algorithms. All algorithms give high classification results consistent with previous studies. We conclude that the data set for classifying children's autism spectrum disorders in the UCI database is reliable.
Downloads
References
Bahassine, S., Madani, A., Al-Sarem, M., & Kissi, M. (2018). Feature selection using an improved Chi-square for Arabic text classification. Journal of King Saud University-Computer and Information Sciences, 32(2), 225-231. https://doi.org/10.1016/j.jksuci.2018.05.010.
Basu, K. (2018). Autism screening adult data set : A machine learning approach. Retrieved from https://github.com/kbasu2016/Autism-Detection-in-Adults/blob/master/proposal.pdf.
Bone, D., Goodwin, M. S., Black, M. P., Lee, C. C., Audhkhasi, K., & Narayanan, S. (2014). Applying machine learning to facilitate autism diagnostics: Pitfalls and promises. Journal of Autism and Developmental Disorders, 45(5), 1121-1136. https://doi.org/10.1007/s10803-014-2268-6.
Demirhan, A. (2018). Performance of machine learning methods in determining the autism spectrum disorder cases. Mugla Journal of Science and Technology, 4(1), 79-84. https://doi.org/10.22531/muglajsci.422546.
Doanh, Đ. (2018). Cần sớm hoàn thiện và đưa tài liệu về hỗ trợ trẻ em tự kỷ vào cuộc sống. Được truy lục từ http://laodongxahoi.net/can-som-hoan-thien-va-dua-tai-lieu-ve-ho-tro-tre-em-tu-ky-vao-cuoc-song-1310672.html.
Fischbach, G. D., & Lord, C. (2010). The simons simplex collection: A resource for identification of autism genetic risk factors. Neuron, 68(2), 192-195. https://doi.org/10.1016/j.neuron.2010.10.006.
Geschwind, D. H., Sowinski, J., Lord, C., Iversen, P., Shestack, J., Jones, … Spence, S. J. (2001). The autism genetic resource exchange: A resource for the study of autism and related neuropsychiatric conditions. The American Journal of Human Genetics, 69(2), 463-466. https://doi.org/10.1086/321292.
Gök, M. (2019). A novel machine learning model to predict autism spectrum disorders risk gene. Neural Computing and Applications, 31(10), 6711-6717. https://doi.org/10.1007/s00521-018-3502-5.
Hall, D., Huerta, M. F., McAuliffe, M. J., & Farber, G. K. (2012). Sharing heterogeneous data: The national database for autism research. Neuroinformatics, 10(4), 331-339. https://doi.org/10.1007/s12021-012-9151-4.
Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. Paper presented at The Fourteenth International Joint Conference on Artificial Intelligence, Quebec, Canada.
Mythili, M. S., & Shanavas, A. R. M. (2014). A study on autism spectrum disorders using classification techniques. International Journal of Soft Computing and Engineering, 4(5), 88-91.
McNamara, B., Lora, C., Yang, D., Flores, F., & Daly, P. (2018). Machine learning classification of adults with autism spectrum disorder. Retrieved from http://rstudio-pubs-static.s3.amazonaws.com/383049_1faa93345b324da6a1081506f371a8dd.html.
Nguyễn, N. T. A. (2012). Một số vấn đề cơ bản trong chuẩn đoán rối loạn phổ tự kỷ. Tạp Chí Khoa Học ĐHQGHN, Khoa Học Xã Hội và Nhân Văn, 28, 143-147.
Pennington, M. L., Cullinan, D., & Southern, L. B. (2014). Defining autism: Variability in state education agency definitions of and evaluations for autism spectrum disorders. Autism Research and Treatment, 2014, 1-8. https://doi.org/10.1155/2014/327271.
Ramani, R. G., & Sivaselvi, K. (2017). Autism spectrum disorder identification using data mining techniques. International Journal of Pure and Applied Mathematics, 117(16), 427-436.
Robins, D. L., Fein, D., Barton, M. L., & Green, J. A. (2001). The modified checklist for autism in toddlers: An initial study investigating the early detection of autism and pervasive developmental disorders. Journal of Autism and Developmental Disorders, 31(2), 131-144. https://doi.org/10.1023/A:1010738829569.
Stevens, E., Atchison, A., Stevens, L., Hong, E., Granpeesheh, D., Dixon, D., & Linstead, E. (2017). A cluster analysis of challenging behaviors in autism spectrum disorder. Paper presented at The 16th IEEE International Conference on Machine Learning and Applications, Cancun, Mexico. https://doi.org/10.1109/ICMLA.2017.00-85.
Thabtah, F. A. (2017a). Autism screening adult data set. Retrieved from https://archive.ics.uci.edu/ml/datasets/Autism+Screening+Adult.
Thabtah, F. A. (2017b). Autistic spectrum disorder screening data for adolescent data set. Retrieved from https://archive.ics.uci.edu/ml/datasets/Autistic+Spectrum+Disorder+Screening+Data+for+Adolescent+++.
Thabtah, F. A. (2017c). Autistic spectrum disorder screening data for children data set. Retrieved from https://archive.ics.uci.edu/ml/datasets/Autistic+Spectrum+Disorder+Screening+Data+for+Children++.
Thabtah, F. A. (2018). Detecting autistic traits using computational intelligence & machine learning techniques. Retrived from http://eprints.hud.ac.uk/id/eprint/34844/.
The United Nations. (n.d). World autism awareness day 2 April. Retrieved from https://www.un.org/en/observances/autism-day/background.
Towle, P. O., & Patrick, P. A. (2016). Autism spectrum disorder screening instruments for very young children: A systematic review. Autism Research and Treatment, 2016, 1-29. https://doi.org/10.1155/2016/4624829.
Wall, D. P., Kosmicki, J., DeLuca, T. F., Harstad, E., & Fusaro, V. A. (2012). Use of machine learning to shorten observation-based screening and diagnosis of autism. Translational Psychiatry, 2(4), 1-8. https://doi.org/10.1038/tp.2012.10.
Downloads
Published
Volume and Issues
Section
Copyright & License
Copyright (c) 2020 Phạm Quang Thuận, Nguyễn Đình Thuận.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.