• Nguyễn Đăng Chiến Dalat University, Viet Nam
  • Lưu Thế Vinh The Faculty of Electronic Technology, Industrial University of Ho Chi Minh City, Viet Nam
  • Huỳnh Thị Hồng Thắm Hoang Hoa Tham Senior High School, Khanhhoa, Viet Nam
  • Chun Hsing Shih The Department of Electrical Engineering, National Chi Nan University, Nantou, Taiwan, China




Band-to-band tunneling, Double-gate transistor, Hetero-gate dielectric, High-k gate-insulator, Tunnel FET.


Hetero-gate dielectric (HGD) engineering not only suppresses the ambipolar current but also enhances the on-current of tunnel field-effect transistors (TFETs). Based on two-dimensional device simulations, we examined the roles and designs of hetero-gate dielectric structure in single- and double-gate TFETs. Proper comparisons and analyses show that the roles and designs of source-side dielectric heterojunctions are similar, whereas those of drain-side dielectric heterojunctions are extremely different in single- and double-gate TFETs. For both device structures, the optimal position of a source-side dielectric heterojunction does not depend on the ratio of low/high-k equivalent oxide thicknesses (EOTs). When increasing the EOT ratio, the on-current enhancement by an optimized source-side dielectric heterojunction is first increased (EOT ratio < 12) and then saturated (EOT ratio > 12). The role of a drain-side dielectric heterojunction in enhancing on-current is limited in double-gate TFETs (every EOT ratio), but significant in single-gate devices (EOT ratio < 12). For EOT ratios < 12, the optimal position of a drain-side dielectric heterojunction in double-gate TFETs is around 2-3 nm farther from the source compared to that in single-gate TFETs. For EOT ratios > 12, the optimal position of a drain-side dielectric heterojunction in double-gate TFETs is not dependent on the EOT ratio, unlike single-gate TFETs. Those differences are due to the difference in the depths of local potential wells in the two TFET structures.


Download data is not yet available.


Appenzeller, J., Lin, Y.-M., Knoch, J., & Avouris, Ph. (2004). Band-to-band tunneling in carbon nanotube field-effect transistors. Physical Review Letters, 93(19), 1-4.

Bagga, N., Chauhan, N., Banchhor, S., Gupta, D., & Dasgupta, S. (2020). Demonstration of a novel tunnel FET with channel sandwiched by drain. Semiconductor Science Technology, 35, 1-7.

Beniwal, S. & Saini, G. (2019). L-shaped tunnelling field effect transistor with hetero-gate dielectric and hetero dielectric box. Paper presented at The 3rd International Conference on Trends in Electronics and Informatics, Tirunelveli, India. http://dx.doi.org/10.1109/ICOEI.2019.8862520.

Boucart, K. & Ionescu, A. M. (2007). Double-gate tunnel FET with high-κ gate dielectric. IEEE Transactions on Electron Devices, 54(7), 1725-1733.

Chien, N. D., Anh, T. T. K., Chen, Y.-H., & Shih, C.-H. (2019). Device physics and design of symmetrically doped tunnel field-effect transistors. Microelectronic Engineering, 216, 1-9.

Chien, N. D., & Vinh, L. T. (2013). Drive current enhancement in tunnel field-effect transistors by graded heterojunction approach. Journal of Applied Physics, 114(9), 1-6.

Choi, W. Y., Park, B.-G., Lee, J. D., & Liu, T.-J. K. (2007). Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Letters, 28(8), 743-745.

Duan, X., Zhang, J., Wang, S., Li, Y., Xu S., & Hao, Y. (2018). A high-performance gate engineered InGaN dopingless tunnel FET. IEEE Transactions on Electron Devices, 65(3), 1223-1229.

Hraziia, A. V., Amara, A., & Anghel, C. (2012). An analysis on the ambipolar current in Si double-gate tunnel FETs. Solid-State Electronics, 70, 67-72.

IEEE. (2020). International Roadmap for Devices and Systems. Retrieved from https://irds.ieee.org/.

Joshi, T., Singh, B., & Singh, Y. (2020). Controlling the ambipolar current in ultrathin SOI tunnel FETs using the back-bias effect. Journal of Computational Electronics, 19, 658-667.

Kane, E. O. (1961). Theory of tunneling. Journal of Applied Physics, 32(1), 83-91.

Koswatta, S. O., Lundstrom, M. S., & Nikonov, D. E. (2009). Performance comparison between p-i-n tunneling transistors and conventional MOSFETs. IEEE Transactions on Electron Devices, 56(3), 456-465.

Liu, C., Ren, Q., Chen, Z., Zhao, L., Liu, C., Liu, Q., … & Zhao, Q.-T. (2019). A T-shaped SOI tunneling field-effect transistor with novel operation modes. IEEE Journal of the Electron Devices Society, 7, 1114-1118.

Lyu, Z., Lu, H., Zhang, Y., Zhang, Y., Lu, B., Zhu, Y., … & Sun, J. (2020). Characteristic enhancement in tunnel field-effect transistors via introduction of vertical graded source. Chinese Physics B, 29(5), 1-6. Retrieved from http://cpb.iphy.ac.cn/article/2020/2030/cpb_29_5_058501.html

Mookerjea, S., & Datta, S. (2008). Comparative study of Si, Ge and InAs based steep subthreshold slope tunnel transistors for 0.25V supply voltage logic applications. Paper presented at The 66th Device Research Conference, California, USA. http://dx.doi.org/10.1109/DRC.2008.4800730.

Nayfeh, O. M., Hoyt, J. L., & Antoniadis, D. A. (2009). Strained-Si1-xGex/Si band-to-band tunneling transistors: Impact of tunnel junction germanium composition and doping concentration on switching behavior. IEEE Transactions Electron Devices, 56(10), 2264-2269.

Pandey, C. K., Dash, D. & Chaudhury, S. (2019). Approach to suppress ambipolar conduction in tunnel FET using dielectric pocket. Micro & Nano Letters, 14(1), 86-90.

Seabaugh, A. C., & Zhang, Q. (2010). Low voltage tunnel transistors for beyond CMOS logic. Proceedings of the IEEE, 98(12), 2095-2110.

Shih, C.-H., Chien, N. D., Tran, H.-D., & Chuan, P. V. (2020). Device physics and design of hetero-gate dielectric tunnel field-effect transistors with different low high-k EOT ratios. Applied Physics A, 126, 1-11.

Smets, Q., Verreck, D., Verhulst, A. S., Rooyackers, R., Merckling, C., Put, M. V. D., … Heyns, M. M. (2014). InGaAs tunnel diodes for the calibration of semi-classical and quantum mechanical band-to-band tunneling models. Journal Applied Physics, 115, 1-9.

Synopsys. (2013). MEDICI User’s Manual. California, USA: Synopsys Publishing.

Sze, S. M. (1981). Physics of Semiconductor Devices (2nd ed.). New Jersey, USA: John Wiley & Sons Publishing.

Toh, E.-H., Wang, G. H., Samudra, G., & Yeo, Y.-C. (2007). Device physics and design of double-gate tunneling field-effect transistor by silicon film thickness optimization. Applied Physics Letters, 90, 1-3.

Toh, E.-H., Wang, G. H., Samudra, G., & Yeo, Y.-C. (2008). Device physics and design of germanium tunneling field-effect transistor with source and drain engineering for low power and high performance applications. Journal Applied Physics, 103, 1-5.

Wang, P.-F., Hilsenbeck, K., Nirschl, Th., Oswald, M., Stepper, Ch., Weis, M., … & Hansch, W. (2004). Complementary tunneling transistor for low power application. Solid-State Electronics, 48(12), 2281-2286.

Xu, H. F., Cui, J., Sun, W., & Han, X. F. (2019). Analysis of non-uniform hetero-gate-dielectric dual-material control gate TFET for suppressing ambipolar nature and improving radio-frequency performance. Chinese Physics B, 28(10), 1-14.




Volume and Issues


Natural Sciences and Technology

How to Cite

Chiến, N. Đăng, Vinh, L. T., Thắm, H. T. H., & Shih, C. H. (2020). DIFFERENT ROLES AND DESIGNS OF HETERO-GATE DIELECTRIC IN SINGLE- AND DOUBLE-GATE TUNNEL FIELD-EFFECT TRANSISTORS. Dalat University Journal of Science, 10(3), 110-123. https://doi.org/10.37569/DalatUniversity.10.3.745(2020)