ENHANCED SENSITIVITY OF SURFACE PLASMON RESONANCE SENSOR BASED ON COMBINATION OF Au/PEDOT:PSS NANOLAYERS

Authors

  • Nguyen Van Sau Tra Vinh University, Viet Nam
  • Ma Thai Hoa Tra Vinh University,
  • Nguyen Xuan Thi Diem Trinh Tra Vinh University, Viet Nam
  • Nguyen Tan Tai Tra Vinh University, Viet Nam

DOI:

https://doi.org/10.37569/DalatUniversity.11.1.775(2021)

Keywords:

Combination, Optical sensor, Sensitivity, Surface plasmon resonance.

Abstract

This paper simulates an optical sensor utilizing a prism based on surface plasmon resonance (SPR). The simulations combine a layer of Au and an additional layer of different materials: aluminum arsenide (AlAs), poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), zinc oxide (ZnO), and polydimethylsiloxane (PDMS) for SPR excitation. The simulations show that a sensor based on a combination of Au/PEDOT:PSS layers with thicknesses of 40 nm and 5 nm, respectively, offers a sensor sensitivity of 186.07°/RIU, which is 1.2 times better than that of a sensor using only a thin Au layer. The enhancement in sensor sensitivity offers advantages for early detection of small concentrations of bacteria in biomedical and chemical applications.

Downloads

Download data is not yet available.

References

Akter, S., & Razzak, S. M. A. (2019). Highly sensitive open-channels based plasmonic biosensor in visible to near-infrared wavelength. Results in Physics, 13, 1-8.

Chah, S. W., Yi, J. H., & Zare, R. N. (2004). Surface plasmon resonance analysis of aqueous mercuric ions. Sensors and Actuators B: Chemical, 99(2-3), 216-222.

Chen, C. W., Hsiao, S. Y., Chen, C. Y., Kang, H. W., Huang, Z. Y., & Lin, H. W. (2015). Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells. Journal of Materials Chemistry A, 3(17), 9152-9159.

Chien, F. C., Lin, C. Y., Yih, J. N., Lee, K. L., Chang, C. W., Wei, P. K., Sun, C. C., & Chen, S. J. (2007). Coupled waveguide-surface plasmon resonance biosensor with subwavelength grating. Biosensors and Bioelectronics, 22(11), 2737-2742.

Fen, Y. W., Yunnus, W. M. M., & Talib, Z. A. (2015). Analysis of Pb(II) ion sensing by crosslinked chitonsan thin film using surface plasmon resonance spectroscopy. Optik, 124(2), 126-133.

Gupta, V., Probst, P. T., Goβler, F. R., Steiner, A. M., Schubert, J., Brasse, Y., & Konig, T. A. F. (2019). Mechanotunable surface lattice resonances in the visible optical range by soft lithography templates and directed self-assembly. ACS Applied Material Interfaces, 11(31), 28189-28196.

Ho, H. P., Lam, W. W., & Wu, S. Y. (2002). Surface plasmon resonance sensor based on the measurement of differential phase. Review of Scientific Instruments, 73(10), 3534-3539.

Homola, J. (1995). Optical fiber sensor based on surface plasmon excitation. Sensors and Actuators B: Chemical, 29(1), 401-405.

Iga, M., Seki, A., & Watanabe, K. (2004). Hetero-core structured fiber optic surface plasmon resonance sensor with silver film. Sensors and Actuators B-Chemical, 101(3), 368-372.

Jorgenson, R. C., & Yee, S. S. (1993). A fiber-optic chemical sensor based on surface plasmon resonance. Sensors and Actuators B: Chemical, 12(3), 213-220.

Liu, P. Y., Chin, L. K., Ser, W., Chen, H. F., Hsieh, C. M., Lee, C. H., Sung, K. B., Ayi, T. C., Yap, P. H., Liedberg, B., Wang, K., Bourouina, T., & Leprince-Wang, Y. (2016). Cell refractive index for cell biology and disease diagnosis: past, present and future. Lab on a Chip, 16(4), 634-644.

Maharana, P. K., & Jha, R. (2012). Chalcogenide prism and graphene multilayer based surface plasmon resonance affinity biosensor for high performance. Sensors and Actuators B-Chemical, 169(5), 161-166.

McPeak, K. M., Jayanti, S. V., Kress, S. J. P., Meyer, S., Lotti S., Rossinelli, A., & Norris, D. J. (2015). Plasmonic films can easily be better: Rules and recipes. ACS Photonics, 2(3), 326-333.

Mishra, A. K., Mishra, S. K., & Gupta, B. D. (2015). SPR based fiber optic sensor for refractive index sensing with enhanced detection accuracy and figure of merit in visible region. Optics Communications, 344(1), 86-91.

Nguyen, T. T., Lee, E. C., & Ju, H. (2014). Bimetal coated optical fiber sensors based on surface plasmon resonance induced change in birefringence and intensity. Optics Express, 22(5), 5590-5598.

Nguyen, T. T., Bea, S. O., Kim, D. M., Yoon, W. J., Park, J. W., An, S. S., & Ju, H. (2015). A regenerative fiber optic sensor using surface plasmon resonance for clinical diagnosis of fibrinogen. International Journal of Biomedicine, 10, 155-163.

Nguyen, T. T., Trinh, K. T. L., Yoon, W. J., Lee, N. Y., & Ju, H. (2017). Integration of a microfluidic polymerase chain reaction device and surface plasmon resonance fiber sensor into an inline all-in-one platform for pathogenic bacteria detection. Sensors and actuators B: Chemical, 242, 1-8.

Otto, A. (1968). Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift fur Physik, 216(4), 398-410.

Palumbo, M., Pearson, C., Nagel, J., & Petty, M. C. (2003). Surface plasmon resonance sensing of liquids using polyelectrolyte thin films. Sensors and Actuators B: Chemical, 91(1-3), 291-297.

Panta, Y. M., Liu J., Cheney, M. A., Joo, S. W., & Qian, S. (2009). Ultrasensitive detection of mercury (II) ions using electrochemical surface plasmon resonance with magnetohydrodynamic convention. Journal of Colloid and Interface Science, 333(2), 485-490.

Patnaik, A., Senthilnathan, K., & Jha, R. (2015). Graphene based conducting metal oxide coated D-shaped optical fiber SPR sensor. IEEE Photonics Technology Letters, 27(23), 2437-2440.

Prabowo, B. A., Purwidyantri, A., & Liu, K. C. (2018). Surface plasmon resonance optical sensor: A review on light source technology. Biosensors, 8(3), 1-27.

Raether, H., & Kretschmann, E., (1968). Radiative decay of non radiative surface plasmons excited by light. Zeitschrift fur Naturforschung A, 23(a), 2135-2136.

Rakic, A. D., & Majewski, M. L. (1996). Modeling the optical dielectric function of GaAs and AlAs: Extension of Adachi’s model. Journal of Apllied Physics, 80(10), 5909-5914.

Sharmal, A. K., & Mohr, G. J. (2008). On the performance of surface plasmon resonance based fibre optic sensor with different bimetallic nanoparticle alloy combinations. Journal of Physics D: Applied Physics, 41, 1-7.

Srivastava, S. K., Verma, R., & Gupta, B. D. (2016). Theoretical modeling of a self-referenced dual mode SPR sensor utilizing indium tin oxide film. Optics Communications, 369, 131-137.

Stelling, C., Singh, C. R., Karg, M., Konig, T. A., Thelakkat, M., & Retsch, M. (2017). Plasmonic nano meshes: their ambivalent role as transparent electrodes in organic solar cells. Science Reports, 7, 1-13.

Telezhnikova, O., & Homola, J. (2006). New approach to spectroscopy of surface plasmons. Optics Letters, 31(22), 3339-3341.

Truong, T. V. N., Tran, T. N. H., Nam, E., Nguyen, T. T., Yoon, W. J., Cho, S., Kim, J., Chang, K. A., & Ju, H. (2018). Blood-based immunoassay of tau proteins for early diagnosis of Alzheimer’s disease using surface plasmon resonance fiber sensors. RSC Advance, 8(14), 7855-7862.

Turker, B., Guner, H., Ayas, S., Ekiz, O. O., Acar, H., Guler, M. O., & Dana, A. (2011). Grating coupler integrated photodiodes for plasmon resonance based sensing. Lab on a Chip, 11(2), 282-287.

Vala, M., Chadt, K., Piliarik, M., & Homola, J. (2010). High-performance compact SPR sensor for multi-analyte sensing. Sensors and Actuators B: Chemical, 148(2), 544-549.

Van Gent, J., Lambeck, P. V., Kreuwel, H. J., Gerritsma, G. J., Sudhölter, E. J., Reinhoudt, D. N., & Popma, T. J. (1990). Optimization of a chemooptical surface plasmon resonance based sensor. Applied Optics, 29(19), 2843-2849.

Wu, S. Y., Ho, H. P., Law, W. C., Lin, C., & Kong, S. K. (2004). Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach–Zehnder configuration. Optics Letters, 29(20), 2378-2380.

Yang, D., Lu, H. H., Chen, B., & Lin, C. W. (2010). Surface plasmon resonance of SnO2/Au Bi-layer films for gas sensing applications. Sensors and Actuators B: Chemical, 145(2), 832-838.

Yuan, W., Ho, H. P., Wong, C. L., Kong, S. K., & Lin, C. (2007). Surface plasmon resonance biosensor incorporated in a Michelson interferometer with enhanced sensitivity. Sensors Journal, 7(1), 70-73.

Yuan, Y., Wang, L., & Huang, J. (2012). Theoretical investigation for two cascaded SPR fiber optic sensors. Sensors and Actuators B: Chemical, 161(1), 269-273.

Zhao, J., Cao, S., Liao, C., Wang, Y., Wang, G., Xu, X., Fu, C., Xu, G., Lian, J., & Wang, Y. (2016). Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber. Sensors and Actuators B: Chemical, 230, 206-211.

Downloads

Published

05-02-2021

Volume and Issues

Section

Natural Sciences and Technology

How to Cite

Sau, N. V., Hoa, M. T., Trinh, N. X. T. D., & Tai, N. T. (2021). ENHANCED SENSITIVITY OF SURFACE PLASMON RESONANCE SENSOR BASED ON COMBINATION OF Au/PEDOT:PSS NANOLAYERS. Dalat University Journal of Science, 11(1), 56-67. https://doi.org/10.37569/DalatUniversity.11.1.775(2021)