PLASMON MODES IN A MULTILAYER STRUCTURE WITH 3-BILAYER GRAPHENE SHEETS

Authors

  • Nguyen Van Men Vietnam National University Ho Chi Minh City, Viet Nam
  • Dong Thi Kim Phuong Vietnam National University Ho Chi Minh City, Viet Nam
  • Vu Dong Duong Vietnam National University Ho Chi Minh City, Viet Nam

DOI:

https://doi.org/10.37569/DalatUniversity.11.1.781(2021)

Keywords:

Bilayer graphene, Collective excitations, Inhomogeneous background dielectric, Three-layer structures.

Abstract

Recent research demonstrates that graphene has unique properties and applications in many technological fields. This paper presents results calculated within random phase approximation at zero temperature for collective excitations, an important characteristic of materials, in a three-layer structure consisting of three bilayer graphene sheets in an inhomogeneous background dielectric. Numerical calculations show that one optical and two acoustic branches exist in the system. The optical branch becomes overdamped quickly while the two acoustic branches continue and disappear at single-particle excitation boundaries. The increase in carrier density in the layers significantly decreases the frequencies of plasmon modes. The inhomogeneity of the background dielectric decreases the frequency of the higher branches but increases that of the lower branch. The effects of interlayer separation on plasmon modes are similar to those in homogeneous systems. Our results may provide more information and contribute to improving the theory of graphene.

Downloads

Download data is not yet available.

References

Badalyan, S. M., & Peeters, F. M. (2012). Effect of nonhomogenous dielectric background on the plasmon modes in graphene double-layer structures at finite temperatures. Physical Review B, 85(19), 195444.

DasSarma, S., Adam, S., Hwang, E. H., & Rossi, E. (2011). Electronic transport in two dimensional graphene. Reviews of Modern Physics, 83, 407-470.

DasSarma, S., Hwang, E. H., & Rossi, E. (2010). Theory of carrier transport in bilayer graphene. Physical Review B, 81, 161407.

Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6, 183-191.

Hwang, E. H., & DasSarma, S. (2007). Dielectric function, screening, and plasmons in two-dimensional graphene. Physical Review B, 75, 205418.

Hwang, E. H., & DasSarma, S. (2009). Exotic plasmon modes of double layer graphene. Physical Review B, 80, 205405.

Khanh, N. Q. (Ed.). (2016). Theory of many-body system. Vietnam National University Ho Chi Minh City.

Khanh, N. Q., & Men, N. V. (2018). Plasmon modes in bilayer-monolayer graphene heterostructures. Physica Status Solidi B, 255(7), 1700656.

Maier, S. A. (2007). Plasmonics: Fundamentals and applications. Springer.

McCann, E. (2011). Electronic properties of monolayer and bilayer graphene. In H. Raza (Ed.) Graphene nanoelectronics (pp. 237-275). Springer.

Men, N. V. (2020). Plasmon modes in N-layer gapped graphene. Physica B, 578, 411876.

Men, N. V., & Khanh, N. Q. (2018). Plasmon modes in Dirac-Schrödinger hybrid electron systems including layer-thickness and exchange-correlation effects. Canadian Journal of Physics, 96, 615-621.

Men, N. V., Khanh, N. Q., & Phuong, D. T. K. (2019a). Plasmon modes in double bilayer graphene heterostructures. Solid State Communications, 294, 43-48.

Men, N. V., Khanh, N. Q., & Phuong, D. T. K. (2019b). Plasmon modes in N-layer bilayer graphene structures. Solid State Communications, 298, 113647.

Men, N. V., Khanh, N. Q., & Phuong, D. T. K. (2020). Plasmon modes in double-layer gapped graphene. Physica E, 118, 113859.

Men, N. V., & Phuong, D. T. K. (2019). Plasmon modes in graphene GaAs heterostructures at finite temperature. International Journal of Modern Physics B, 33(16), 1950174.

Men, N. V., & Phuong, D. T. K. (2020). Plasmon modes in double-layer gapped graphene at zero temperature. Physics Letters A, 384, 126221.

Patel, D. K., Ashraf, S. S. Z., & Sharma, A. C. (2015a). Finite temperature dynamical polarization and plasmons in gapped graphene. Physica Status Solidi B, 252(8), 1817-1826.

Patel, D. K., Ashraf, S. S. Z., & Sharma, A. C. (2015b). Temperature dependent screened electronic transport in gapped graphene. Physica Status Solidi B, 252(2), 282-287.

Phuong, D. T. K., & Men, N. V. (2019). Plasmon modes in 3-layer graphene structures: Inhomogeneity effects. Physics Letters A, 383, 125971.

Phuong, D. T. K., & Men, N. V. (2020). Plasmon modes in N-layer graphene structures at zero temperature. Journal of Low Temperature Physics, 201, 311-320.

Politano, A., Chiarello, G., & Spinella, C. (2017). Plasmon spectroscopy of graphene and other two-dimensional materials with transmission electron microscopy. Materials Science in Semiconductor Processing, 65, 88-99.

Politano, A., Cupolillo, A., Profio, G. D., Arafat, H. A., Chiarello, G., & Curcio, E. (2016). When plasmonics meets membrane Technology. Journal of Condensed Matter Physics, 28, 363003.

Politano, A., Yu, H. K., Farías, D., & Chiarello, G. (2018). Multiple acoustic surface plasmons in graphene/Cu(111) contacts. Physical Review B, 97, 035414.

Principi, A., Carrega, M., Asgari, R., Pellegrini, V., & Polini, M. (2012). Plasmons and Coulomb drag in Dirac/Schroedinger hybrid electron systems. Physical Review B, 86, 085421.

Ryzhii, V., & Ryzhii, M. (2007). Negative dynamic conductivity of graphene with optical pumping. Journal of Applied Physics, 101, 083114.

Ryzhii, V., Ryzhii, M., Mitin, V., Shur, M. S., Satou, A., & Otsuji, T. (2013a). Injection terahertz laser using the resonant inter-layer radiative transitions in double-graphene-layer structure. Journal of Applied Physics, 103, 163507.

Ryzhii, V., Ryzhii, M., Mitin, V., Shur, M. S., Satou, A., & Otsuji, T. (2013b). Terahertz photomixing using plasma resonances in double-graphene layer structures. Journal of Applied Physics, 113, 174506.

Ryzhii, V., Satou, A., & Otsuji, T. (2007). Plasma waves in two-dimensional electron-hole system in gated graphene heterostructures. Journal of Applied Physics, 101, 024509.

Sensarma, R., Hwang, E. H., & DasSarma, S. (2011). Dynamic screening and low energy collective modes in bilayer graphene. Physical Review B, 82, 195428.

Svintsov, D., Vyurkov, V., Ryzhii, V., & Otsuji, T. (2013). Voltage-controlled surfaceplasmon-polaritons in double graphene layer structures. Journal of Applied Physics, 113, 053701.

Ta, H. S. (2017). Plasmon characteristics and dynamical properties of electrons in graphene. (Doctoral dissertation, Hanoi University of Science and Technology, Vietnam).

Tuan, D. V., & Khanh, N. Q. (2013). Plasmon modes of double-layer graphene at finite temperature. Physica E, 54, 267-272.

Vazifehshenas, T., Amlaki, T., Farmanbar, M., & Parhizgar, F. (2010). Temperature effect on plasmon dispersions in double-layer graphene systems. Physics Letters A, 374(48), 4899-4903.

Zhu, J.-J., Badalyan, S. M., & Peeters, F. M. (2013). Plasmonic excitations in Coulomb-coupled N-layer graphene structures. Physical Review B, 87, 085401.

Downloads

Published

04-05-2021

Volume and Issues

Section

Natural Sciences and Technology

How to Cite

Men, N. V., Kim Phuong, D. T., & Duong, V. D. (2021). PLASMON MODES IN A MULTILAYER STRUCTURE WITH 3-BILAYER GRAPHENE SHEETS. Dalat University Journal of Science, 11(1), 104-114. https://doi.org/10.37569/DalatUniversity.11.1.781(2021)