APPLICATION OF OPTICAL MARK RECOGNITION TECHNIQUES TO SURVEY ANSWER SHEETS AT DALAT UNIVERSITY

Authors

  • Thai Duy Quy Dalat University, Viet Nam
  • Phan Thi Thanh Nga Dalat University, Viet Nam
  • Nguyen Van Huy Dung Dalat University, Viet Nam

DOI:

https://doi.org/10.37569/DalatUniversity.11.1.791(2021)

Keywords:

Computer vision, Image processing, Optical Mark Recognition (OMR), Survey answer sheet.

Abstract

In this paper, we examine some image processing techniques used in optical mark recognition, and then we introduce an application that collects data automatically from survey answer sheets at Dalat University. This application is constructed with the Aforge framework. Two types of survey answer sheets are used as input forms for our application: the teaching quality and the administrative quality survey answer sheets. Results show that our application has good performance in recognizing handwritten marks, with an accuracy of 98.9% per 667 answer sheets. Moreover, this application is clearly a time-saving solution for administrative staff because the inputting process is now nine times faster than before.

Downloads

Download data is not yet available.

References

Abraham, S. (2020). Image manipulation: Filter and convolutions. https://www.cs.utexas.edu/~theshark/courses/cs324e/lectures/cs324e-6.pdf.

Bergeron, B. P. (1998). Optical mark recognition. Postgraduate Medicine, 104(2), 23-25.

Cip, P., & Horak, K. (2011). Concept for optical mark processing. Paper presented at the 22nd International DAAAM Symposium, Austria.

de Elias, E. M., Tasinaflfo, P. M., & Junio, R. H. (2019). Alignment, scale and skew correction for optical mark recognition documents based. Paper presented at the 2019 XV Workshop de Visão Computacional (WVC), Brazil.

Đỗ, N. T., & Phạm, V. B. (2007). Xử lý ảnh. Trường Đại học Thái Nguyên.

Kim, U. (2016). Phép tích chập trong xử lý ảnh (convolution). https:// www.stdio.vn/computer-vision/phep-tich-chap-trong-xu-ly-anh-convolution-r1vHu1

Kumar, S. (2015). A study on optical mark readers. International Interdisciplinary Research Journal, 3(11), 40-44.

Mai, H. A. (2014). Nghiên cứu ứng dụng kỹ thuật xử lý ảnh vào xử lý phiếu đánh giá môn học Trường Đại học Lâm nghiệp. Tạp chí Khoa học và Công nghệ Lâm nghiệp, (1), 141-146.

Ngô, Q. T., & Đỗ, N. T. (2000). Một số phương pháp nâng cao hiệu quả nhận dạng phiếu điều tra dạng dấu phục vụ cho thiết kế hệ nhập liệu tự động MarkRead. Tạp chí Tin học và Điều khiển học, 16(3), 65-73.

Phan, T. T. N., Nguyen, T. H. T., Nguyen, V. P., Thai, D. Q., & Vo, P. B. (2017). Vietnamese text extraction from book covers. Dalat University Journal of Science, 7(2), 142-152.

Popli, H., Parekh, H., & Sanghvi, J. (2014). Optical mark recognition. https://www.slideshare.net/HimanshuPopli/optical-mark-recognition-40292822

Sinha, U. (n.d). Image convolution examples. https://aishack.in/tutorials/image-convolution-examples.

Surbhi, G., Geetila, S., & Parvinder, S. S. (2012). A generalized approach to optical mark recognition. Paper presented at the International Conference on Computer and Communication Technologies (ICCCT'2012), Thailand.

Yang, Y. (2006). Image filtering: Noise removal, sharpening, and deblurring. http://eeweb.poly.edu/~yao/EE3414/image_filtering.pdf

Yunxia, J., Xichang, W., & Xichang, C. (2019). Research on OMR recognition based on convolutional neural network Tensorflow platform. Paper presented at the International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), China.

Downloads

Published

05-02-2021

Volume and Issues

Section

Natural Sciences and Technology

How to Cite

Quy, T. D., Nga, P. T. T., & Dung, N. V. H. (2021). APPLICATION OF OPTICAL MARK RECOGNITION TECHNIQUES TO SURVEY ANSWER SHEETS AT DALAT UNIVERSITY. Dalat University Journal of Science, 11(1), 93-103. https://doi.org/10.37569/DalatUniversity.11.1.791(2021)