STRUCTURE, MICROSTRUCTURE, AND PIEZOELECTRIC PROPERTIES OF KNLNS-BNKZ LEAD-FREE CERAMICS UNDER THE EFFECT OF DIFFERENT SINTERING TEMPERATURES

Authors

  • Phan Dinh Gio University of Sciences, Hue University, Viet Nam
  • Huynh Thi Chi Quy Nhon University, Viet Nam
  • Le Tran Uyen Tu University of Sciences, Hue University, Viet Nam
  • Nguyen Truong Tho University of Sciences, Hue University, Viet Nam

DOI:

https://doi.org/10.37569/DalatUniversity.11.4.862(2021)

Keywords:

KNLNS_BNKZ ceramics, Microstructure, Piezoelectric, Sintering temperature.

Abstract

Samples of 0.96(K0.48Na0.48Li0.04)(Nb0.95Sb0.05)O3-0.04Bi0.5(Na0.82K0.18)0.5ZrO3 piezoelectric ceramic were fabricated with conventional ceramic techniques and sintered at different temperatures. The effect of sintering temperature (TS) on the structure, microstructure, and piezoelectric properties of the ceramics was studied in detail. The experimental results showed that with an increase of the TS temperature, the structure of the ceramics transformed from an orthorhombic-tetragonal mixed phase (O-T) at TS £ 1100 °C into a rhombohedral-tetragonal (R-T) mixed phase with a dense microstructure of uniform grain size at TS = 1110 °C. When TS was further increased (TS ³ 1120 °C), the ceramics showed only a rhombohedral phase (R). The ceramics showed the best electrical properties for TS = 1110 °C at which the rhombohedral and tetragonal (R-T) phases coexist. Specifically, the ceramic density reached its highest value (4.22 g/cm3), the electromechanical coupling coefficients kp and kt were 0.46 and 0.50, respectively, and the piezoelectric coefficient d33 was 245 pC/N.

Downloads

Download data is not yet available.

References

Cheng, H., Zhou, W., Du, H., Luo, F. Zhu, D., & Xu, B. (2014). Effect of sintering temperature on phase structure, microstructure, and electrical properties of (K0.5Na0.5)NbO3-(Ba0.6Sr0.4)0.7Bi0.3TiO3 lead-free ceramics. Journal of Materials Science, 49, 1824-1831.

European Union. (2003). Directive 2002/96/EC of the European parliament and of the council of 27 January 2003 on waste electrical and electronic equipment (WEEE). Official Journal of the European Union, 46(L37), 24-39.

Gao, J., Hu, X., Zhang, L., Li, F., Zhang, L., Wang, Y., Hao, Y., Zhong, L., & Ren, X. (2014). Major contributor to the large piezoelectric response in (1 - x)Ba(Zr0.2Ti0.8)O3 - x(Ba0.7Ca0.3)TiO3 ceramics: Domain wall motion. Applied Physics Letters, 104(25), 252909.

Guo, Y., Kakimoto, K., & Ohsato, H. (2004). Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3-LiNbO3 ceramics. Appl. Phys. Lett. 85, 4121.

Haertling, G. H. (1999). Ferroelectric ceramics: History and technology. Journal of the American Ceramic Society, 82(4), 797-818.

Huang, T., Xiao, D. -Q., Liang, W. -F., Wu, J. -G., Wang, Z., & Zhu, J. -G. (2014). Sintering behavior of KNN-BNKT lead free piezoelectric ceramics. Ferroelectrics, 458, 37-42.

Jaffe, H. J., Berlincourt, D., Kinsley, T., Lambert, T. M., & Schwartz, D. (1961). IRE standards on piezoelectric crystals: Measurements of piezoelectric ceramics, 1961. Proceedings of the Institute of Radio Engineers, 49(7), 1161-1169.

Liang, W., Xiao, D., Wu, W., Li, X., Sun, Y., & Zhu, J. (2011). Effect of sintering temperature on phase transitions, properties and temperature stability of (K0.465Na0.465Li0.07)(Nb0.95Sb0.05)O3 lead free piezoelectric ceramics. Current Applied Physics, 11(3), S138-S142.

Liu, B., Zhang, Y., Li, P., Shen, B., & Zhai, J. (2016). Phase transition and electrical properties of Bi0.5(Na0.8K0.2)0.5ZrO3 modified (K0.52Na0.48)(Nb0.95Sb0.05)O3 lead-free piezoelectric ceramics. Ceramics International, 42(12), 13824-13829.

Palei, P. K. & Kumar, P. (2012). Role of sintering temperature on the phase stability and electrical properties of 0.94(K0.5Na0.5NbO3)-0.06(LiSbO3) ceramics. Japanese Journal of Applied Physics, 51(1), 011503.

Phan, D. G., Huynh, Q. V., & Le, D. V. (2018). Low-temperature sintering of 0.96(K0.5Na0.5)NbO3-0.04LiNbO3 lead-free piezoelectric ceramics modified with CuO. International Journal of Materials Reseach, 109(11), 1071-1076.

Phan, D. G., Le, D. V., Le, T. U. T. (2021). Enhanced piezoelectric and energy storage performance of 0.96(K0.48Na0.48Li0.04)(Nb0.95Sb0.05)O3-0.04Bi0.5(Na0.82K0.18)0.5ZrO3 ceramics using two-step sintering method. Journal of Materials Science: Materials in Electronics, 32(8), 13738-13747.

Phan, D. G., & Nguyen, D. P. (2015). Effects of LiF on the structure and electrical properties of (Na0.52K0.435Li0.045)Nb0.87Sb0.08Ta0.05O3 lead-free piezoelectric ceramics sintered at low temperatures. Journal of Materials Science and Chemical Engineering, 3(11), 13-20.

Qin, Y., Zhang, J. L., Yao, W., Lu, C., & Zhang, S. (2016). Domain configuration and thermal stability of (K0.48Na0.52)(Nb0.96Sb0.04)O3-Bi0.5(Na0.82K0.18)0.5ZrO3 piezoceramics with high d33 coefficient. ACS Applied Materials & Interfaces, 8(11), 7257-7265.

Rubio-Marcos, F., López-Juárez, R., Rojas-Hernandez, R. E., Del Campo, A., Razo-Pérez, N., & Fernandez, J. F. (2015). Lead-free piezoceramics: Revealing the role of the rhombohedral-tetragonal phase coexistence in enhancement of the piezoelectric properties. ACS Applied Materials & Interfaces 7, 41, 23080-23088.

Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T., & Nakamura, M. (2004). Lead-free piezoceramics. Nature, 432(7013), 84-87.

Su, H. -H., Hong, C. -S., Chen, H. -R., Juang, Y. -D., Tsai, C. -C, & Chu, S. -Y. (2018). Phase structure transformations and electrical properties of (Na0.52K0.4425)(Nb0.8925Sb0.07)O3-0.0375LiTaO3 ceramics according to sintering temperature. ECS Journal of Solid State Science and Technology, 7(3), N29-N35.

Tan, Z., Xing, J., Wu, J., Chen, Q., Zhang, W., Zhu, J., & Xiao, D. (2018). Sintering behavior, phase structure and electric properties of KNNTSBKNZ ceramics with excessive alkali metals. Journal of Materials Science: Materials in Electronics, 29, 5337-5348.

Tangsritrakul, J., & Hall, D. A. (2018). Structural and functional characterisation of KNNS-BNKZ lead-free piezoceramics. Advances in Applied Ceramics, 117(1), 42-48.

Tangsritrakul, J., Tang, C. C., Day, S. J., & Hall, D. A. (2020). Thermally-induced phase transformations in KNNS-BNKZ lead-free piezoceramics. Journal of the European Ceramic Society, 40(3), 672-681.

Wang, X., Wu, J., Xiao, D., Zhu, J., Cheng, X., Zheng, T., Zhang, B., Lou, X. & Wang, X. (2014). Giant piezoelectricity in potassium-sodium niobate lead-free ceramics. Journal of the American Chemical Society, 136(7), 2905-2910.

Wu, J., Wang, X., Cheng, X., Zheng, T., Zhang, B., Xiao, D., Zhu, J., & Lou, X. (2014). New potassium-sodium niobate lead-free piezoceramic: Giant-d33 vs. sintering temperature. Journal of Applied Physics, 115(11), 114104.

Xing, J., Zheng, T., Wu, J., Xiao, D., & Zhu, J. (2018). Progress on the doping and phase boundary design of potassium-sodium niobate lead-free ceramics. Journal of Advanced Dielectrics, 8(3), 1830003.

Xu, Y. (1991). Ferroelectric materials and their applications. Elsevier Science.

Yao, F. -Z., Patterson, E. A., Wang, K., Jo, W., Rödel, J., & Li, J. -F. (2014). Enhanced bipolar fatigue resistance in CaZrO3-modified (K,Na)NbO3 lead-free piezoceramics. Applied Physics Letters, 104(24), 242912.

Zhai, Y., Du, J., Chen, C., Hao, J., Fu, P., Li, W., & Xu, Z. (2019). Temperature stability and electrical properties of Tm2O3 doped KNN-based ceramics. Journal of Materials Science: Materials in Electronics, 30(5), 4716-4725.

Zhang, N., Zheng, T., & Wu, J. (2020). Lead-free (K,Na)NbO3-based materials: Preparation techniques and piezoelectricity. ACS Omega, 5(7), 3099-3107.

Downloads

Published

22-07-2021

Volume and Issues

Section

Natural Sciences and Technology

How to Cite

Gio, P. D., Chi, H. T., Tu, L. T. U., & Tho, N. T. (2021). STRUCTURE, MICROSTRUCTURE, AND PIEZOELECTRIC PROPERTIES OF KNLNS-BNKZ LEAD-FREE CERAMICS UNDER THE EFFECT OF DIFFERENT SINTERING TEMPERATURES. Dalat University Journal of Science, 11(4), 25-34. https://doi.org/10.37569/DalatUniversity.11.4.862(2021)