TOPOLOGICAL INVARIANTS AND MILNOR FIBRE FOR \(\mathcal{A}\)-FINITE GERMS \(C^2\) to \(C^3\)

Authors

  • Javier Fernández de Bobadilla Basque Foundation for Science, Spain
  • Guillermo Peñafort-Sanchis Mazarredo, Bilbao, Spain
  • José Edson Sampaio Universidade Federal do Ceará, Rua Campus do Pici, Brazil

DOI:

https://doi.org/10.37569/DalatUniversity.12.2.864(2022)

Keywords:

Milnor fiber, Topological invariance.

Abstract

This note is the observation that a simple combination of known results shows that the usual analytic invariants of a finitely determined multi-germ \(f : (C^2 , S) → (C^3 , 0) \)—namely, the image Milnor number , the number of cross-caps and triple points, \(C\) and \(T\), and the Milnor number \(μ(Σ)\) of the curve of double points in the target—depend only on the embedded topological type of the image of \(f\). As a consequence, one obtains the topological invariance of the sign-refined Smale invariant for immersions \(j : S^3 \looparrowright  S^5\) associated to finitely determined map germs \((C^2 , 0) → (C^3 , 0)\).

Downloads

Download data is not yet available.

References

Buchweitz, R. O., & Greuel, G. M. (1980). The Milnor number and deformations of complex curve singularities. Inventiones Mathematicae, 58(3), 241-281. https://doi.org/10.1007/BF01390254

de Jong, T. (1990). The virtual number of d∞ points I. Topology, 29(2), 175-184. https://doi.org/10.1016/0040-9383(90)90006-6

Lê, D. T. (1973). Calcul du nombre de cycles évanouissants d’une hypersurface complexe [Calculation of the number of vanishing cycles of a complex hypersurface]. Annales de l’Institut Fourier, 23(4), 261-270. https://doi.org/10.5802/aif.491

Marar, W. L., & Mond, D. (1989). Multiple point schemes for corank 1 maps. Journal of the London Mathematical Society, 2(3), 553-567. https://doi.org/10.1112/jlms/s2-39.3.553

Marar, W. L., Nuño-Ballesteros, J. J., & Peñafort-Sanchis, G. (2012). Double point curves for corank 2 map germs from C2 to C3. Topology and its Applications, 159(2), 526-536. https://doi.org/10.1016/j.topol.2011.09.028

Massey, D., & Siersma, D. (1992). Deformation of polar methods. Annales de l’Institut Fourier, 42(4), 737-778. https://doi.org/10.5802/aif.1308

Mond, D. (1991). Vanishing cycles for analytic maps. In D. Mond & J. Montaldi (Eds.), Singularity theory and its applications, Warwick 1989, Part I: Geometric aspects of its singularities (pp. 221-234). Springer. https://doi.org/10.1007/BFb0086385

Mond, D., & Nuño-Ballesteros, J. J. (2020). Singularities of mappings: The local behaviour of smooth and complex analytic mappings. Springer. https://doi.org/10.1007/978-3-030-34440-5

Némethi, A., & Pintér, G. (2015). Immersions associated with holomorphic germs. Commentarii Mathematici Helvetici, 90(3), 513-541. https://doi.org/10.4171/CMH/363

Siersma, D. (1983). Isolated line singularities. In P. Orlik (Ed.), Singularities: Proceedings of symposia in pure mathematics (Vol. 40, Part 2, pp. 485-496). American Mathematical Society. https://doi.org/10.1090/pspum/040.2/713274

Siersma, D. (1988). Hypersurfaces with singular locus a plane curve and transversal type A1. Banach Center Publications, 20, 397-410. https://doi.org/10.4064/-20-1-397-410

Siersma, D. (1991). Vanishing cycles and special fibres. In D. Mond & J. Montaldi (Eds.), Singularity theory and applications, Warwick 1989, Part I: Geometric aspects of singularities (pp. 292-301). Springer. https://doi.org/10.1007/BFb0086389

Siersma, D. (2001). The vanishing topology of non isolated singularities. In D. Siersma, C. T. C. Wall, & V. Zakalyukin (Eds.), New developments in singularity theory, Nato science series (Vol. 21, pp. 447-472). Springer. https://doi.org/10.1007/978-94-010-0834-1_18

Siersma, D., & Tibăr, M. (2017). Milnor fibre homology via deformation. In W. Decker, G. Pfister, & M. Schulze (Eds.), Singularities and computer algebra: Festschrift for Gert-Martin Greuel on the occasion of his 70th birthday (pp. 305-322). Springer. https://doi.org/10.1007/978-3-319-28829-1_14

van Straten, D. (2017). On a theorem of Greuel and Steenbrink. In W. Decker, G. Pfister, & M. Schulze (Eds.), Singularities and computer algebra: Festschrift for Gert-Martin Greuel on the occasion of his 70th birthday (pp. 353-364). Springer. https://doi.org/10.1007/978-3-319-28829-1_17

Downloads

Published

28-01-2022

Volume and Issues

Section

Natural Sciences and Technology

How to Cite

Fernández De Bobadilla, J., Peñafort-Sanchis, G., & Sampaio, J. E. (2022). TOPOLOGICAL INVARIANTS AND MILNOR FIBRE FOR \(\mathcal{A}\)-FINITE GERMS \(C^2\) to \(C^3\). Dalat University Journal of Science, 12(2), 19-25. https://doi.org/10.37569/DalatUniversity.12.2.864(2022)