STUDY OF CRITICAL BEHAVIOR IN Fe88Co2Zr7B2Cu1 ALLOY RIBBONS
DOI:
https://doi.org/10.37569/DalatUniversity.11.4.869(2021)Keywords:
Critical parameter, Magnetic entropy change, Magnetic refrigeration, Magnetic transition, Magnetocaloric effect, Melt-spinning method.Abstract
In this work, we investigated the critical behavior of Fe88Co2Zr7B2Cu1 alloy ribbons prepared using a single-roller melt-spinning method. X-ray diffraction analysis shows that the alloy is almost amorphous. This alloy undergoes a second-order ferromagnetic-paramagnetic (FM-PM) phase transition at room temperature (Curie temperature TC = 296 K). To investigate the nature of the FM-PM phase transition near the TC for the alloy, we performed a critical-exponent study. Based on modified Arrott plots, the Kouvel-Fisher method, and Widom’s scaling relation, a set of critical parameters were determined. The critical parameters are β = 0.545 ± 0.041 and γ = 1.109 ± 0.018 obtained from the modified Arrott plots; β = 0.547 ± 0.005 and γ = 1.105 ± 0.016 from the Kouvel-Fisher method, and d = 3.035 ± 0.059 from Widom’s scaling relation. These values are close to those expected for the mean-field model, revealing long-range FM interactions.
Downloads
References
Arrott, A., & Noakes, J. E. (1967). Approximate equation of state for nickel near its critical temperature. Physical Review Letters, 19(14), 786-789.
Banerjee, B. K. (1964). On a generalised approach to first and second order magnetic transitions. Physics Letters, 12, 16-17.
Bouzidi, S., Gdaiem, M. A., Rebaoui, S., Dhahri, J., & Hlil, E. K. (2020). Large magnetocaloric effect in La0.75Ca0.25-xNaxMnO3 (0 <= x <= 0.10) manganites. Applied Physics A, 126(1), 60.
Castaño, F. J., García-Beneytez, J. M., Crespo, P., Multigner, M., Vazquez, M., & Hernando, A. (1999). Static critical phenomena in ball milled (Fe0.74Cu0.26)85Zr15 amorphous alloy. Journal of Physics: Condensed Matter, 11(29), 5671-5680.
Chaudhary, V., Chen, X., & Ramanujan, R. V. (2019). Iron and manganese based magnetocaloric materials for near room temperature thermal management. Progress in Materials Science, 100, 64-98.
Chen, L., Zhang, J., Wen, L., Yu, P., & Xia, L. (2018). Outstanding magnetocaloric effect of Fe88-xZr8B4Smx (x = 0, 1, 2, 3) amorphous alloys. Science China Physics, Mechanics & Astronomy, 61(5), 056121.
Dadda, K., Alleg, S., Suñol, J. J., Bessais, L., & Hlil, E. K. (2020). Structure, magnetocaloric effect and critical behaviour in Ni50Mn30(Sn,In)20 Heusler alloys. Journal of Superconductivity and Novel Magnetism, 33(7), 2209-2218.
Duc, N. T. M., Shen, H. X., Clements, E. M., Thiabgoh, O., Sanchez Llamazares, J. L., Sanchez-Valdes, C. F., Huong, N. T., Sun, J. F., Srikanth, H., & Phan, M. H. (2019). Enhanced refrigerant capacity and Curie temperature of amorphous Gd60Fe20Al20 microwires. Journal of Alloys and Compounds, 807, 151694.
Dunhui, W., Zhida, H., Qingqi, C., Songling, H., Jianrong, Z., & Youwei, D. (2005). The reduced Curie temperature and magnetic entropy changes in Gd1−xInx alloys. Journal of Alloys and Compounds, 396(1), 22-24.
Franco, V., Blázquez, J. S., Ipus, J. J., Law, J. Y., Moreno-Ramírez, L. M., & Conde, A. (2018). Magnetocaloric effect: From materials research to refrigeration devices. Progress in Materials Science, 93, 112-232.
Franco, V., Caballero-Flores, R., Conde, A., Knipling, K. E., & Willard, M. A. (2011). Magnetocaloric effect and critical exponents of Fe77Co5.5Ni5.5Zr7B4Cu1: A detailed study. Journal of Applied Physics, 109(7), 07A905.
Gan, L., Ma, L., Tang, B., Ding, D., & Xia, L. (2017). Effect of Co substitution on the glass forming ability and magnetocaloric effect of Fe88Zr8B4 amorphous alloys. Science China Physics, Mechanics & Astronomy, 60, 076121.
Ghosh, S., & Ghosh, S. (2020). Cosubstitution in Ni-Mn-Sb Heusler compounds: Realization of room-temperature reversible magnetocaloric effect driven by second-order magnetic transition. Physical Review Materials, 4(2), 025401.
Gschneidner, K. A. Jr., Pecharsky, V. K., & Tsokol, A. O. (2005). Recent developments in magnetocaloric materials. Reports on Progress in Physics, 68(6), 1479-1539.
Kouvel, J. S., & Fisher, M. E. (1964). Detailed magnetic behavior of nickel near its Curie point. Physical Review, 136(6A), A1626-A1632.
Li, X., Pan, Y., & Lu, T. (2018). Magnetocaloric effect in Fe-based amorphous alloys and their composites with low boron content. Journal of Non-Crystalline Solids, 487, 7-11.
Mañosa, L., González-Alonso, D., Planes, A., Barrio, M., Tamarit, J. -L., Titov, I. S., Acet, M., Bhattacharyya, A., & Majumdar, S. (2011). Inverse barocaloric effect in the giant magnetocaloric La-Fe-Si-Co compound. Nature Communications, 2(1), 595.
Phan, M. -H., & Yu, S. -C. (2007). Review of the magnetocaloric effect in manganite materials. Journal of Magnetism and Magnetic Materials, 308(2), 325-340.
Stanley, H. E. (1972). Introduction to phase transitions and critical phenomena. American Journal of Physics, 40(6), 927-928.
Thanh, T. D., Dan, N. H., Phan, T. -L., Kumarakuru, H., Olivier, E. J., Neethling, J. H., & Yu, S. -C. (2014). Critical behavior of the ferromagnetic-paramagnetic phase transition in Fe90-xNixZr10 alloy ribbons. Journal of Applied Physics, 115(2), 023903.
Wang, X., Wang, Q., Tang, B. Z., Ding, D., Cui, L., & Xia, L. (2020a). Magnetic and magneto-caloric properties of the amorphous Fe92-xZr8Bx Ribbons. Materials, 13(23), 5334.
Wang, X., Wang, Q., Tang, B. Z., Ding, D., Cui, L., & Xia, L. (2020b). Magnetic and magneto-caloric properties of the amorphous Fe92-xZr8Bx ribbons. Materials (Basel, Switzerland), 13(23), 5334.
Widom, B. (1964). Degree of the critical isotherm. The Journal of Chemical Physics, 41(6), 1633-1634.
Yang, L., Li, J., Tu, D., Strickland, J. C. J., Hu, Q., Dong, H., & Li, J. (2020). Reduced annealing time and enhanced magnetocaloric effect of La(Fe, Al)13 alloy by La-nonstoichiometry and Si-doping. Acta Metallurgica Sinica (English Letters), 33(11), 1535-1542.
Yang, W., Li, W., Wan, C., Huo, J., Mo, J., Liu, H., & Shen, B. (2020). Low-temperature magnetic properties and magnetocaloric effect of Fe-Zr-Cu amorphous alloys. Journal of Low Temperature Physics, 200(1), 51-61.
Yen, N. H., Ha, N. H., Thanh, P. T., Ngoc, N. H., Thanh, T. D., & Dan, N. H. (2019a). Magnetic properties and magnetocaloric effect of Fe90-xCoxZr7Cu1B2 rapidly quenched alloys [Paper presentation]. The 4th International Conference on Advanced Materials and Nanotechnology (ICAMN), Hanoi, Vietnam.
Yen, N. H., Ha, N. H., Thanh, P. T., Thanh, T. D., Ngoc, N. H., & Dan, N. H. (2019b). Influence of Cr-addition on magnetic properties and magnetocaloric effect of Fe-Cr-B-Gd-Zr rapidly quenched alloys. Journal of Electronic Materials, 48(11), 7282-7291.
Downloads
Published
Volume and Issues
Section
Copyright & License
Copyright (c) 2021 Nguyen Hai Yen, Nguyen Hoang Ha, Pham Thi Thanh, Kieu Xuan Hau, Tran Dang Thanh, Nguyen Huy Dan.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.