• Le Thi Minh Phuong Saigon University
  • Dinh Xuan Khoa Vinh University
  • Nguyen Huy Bang Vinh University
  • Thai Doan Thanh Ho Chi Minh City University of Food Industry
  • Nguyen Tuan Anh Ho Chi Minh City University of Food Industry
  • Nguyen Thi Thu Hien Ho Chi Minh City University of Food Industry
  • Hoang Minh Dong Ho Chi Minh City University of Food Industry




Analytical solution, Electromagnetically induced transparency, External magnetic field, Optical bistability.


We investigate the behavior of optical bistability in a degenerate two-level atomic medium using an external magnetic field to separate the lower level into two distinct levels that both connect to an upper level by the probe and coupling laser fields. Based on analytical solutions, the absorption spectrum and behavior of optical bistability in an electromagnetically induced transparency regime under an external magnetic field are investigated. By controlling the external magnetic field, we find that the appearance and disappearance of the optical bistability can be easily controlled according to the strength of the magnetic field in the transparent window domain. Furthermore, the effects of the intensity of the coupling laser field and the parameters of the system on the behavior of optical bistability are also considered. The proposed model is useful for applications in all-optical switches and magneto-optic storage devices.


Metrics Loading ...


Anh, N. T., Thanh, T. D., Bang, N. H., & Dong, H. M. (2021). Microwave-assisted all-optical switching in a four-level atomic system. Pramana – Journal Physics, 95, 1-8.

Asadpour, H., & Soleimani, H. R. (2014). Polarization dependence of optical bistability in the presence of external magnetic field. Optics Communications, 310, 120-124.

Boller, K. -J., Imamoğlu, A., & Harris, S. E. (1991). Observation of electromagnetically induced transparency. Physical Review Letters, 66(20), 2593-2596.

Brown, A., Joshi, A., & Xiao, M. (2003). Controlled steady-state switching in optical bistability. Applied Physics Letters, 83(7), 1301-1303.

Cheng, D., Liu, C., & Gong, S. (2004). Optical bistability and multistability via the effect of spontaneously generated coherence in a three-level ladder-type atomic system. Physics Letters A, 332(3-4), 244-249.

Gibbs, H. M., McCall, S. L., & Venkatesan, T. N. C. (1976). Differential gain and bistability using a sodium-filled Fabry-Perot interferometer. Physics Review Letters, 36(19), 1135-1138.

Gong, S., Du, S., & Xu, Z. (1997). Optical bistability via atomic coherence. Physics Letters A, 226, 293-297.

Gong, S., Du, S., Xu, Z., & Pan, S. (1996). Optical bistability via a phase fluctuation effect of the control field. Physics Letters A, 222, 237-240.

Haifeng, X. (2019). Optical bistability and multistability via both coherent and incoherent fields in a three-level system. Laser Physics, 29(1), 015205.

Harshawardhan, W., & Agarwal, G. S. (1996). Controlling optical bistability using electromagnetic-field-induced transparency and quantum interferences. Physical Review A, 53, 1812-1817.

Hau, L. V., Harris, S. E., Dutton, Z., & Behroozi, C. H. (1999). Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature, 397, 594-598.

Hoang, M. D., & Nguyen, H. B. (2019). Controllable optical switching in a closed-loop three-level lambda system. Physica Scripta, 94(11), 115510.

Hoang, M. D., Luong, T. Y. N., & Nguyen, H. B. (2019). Optical switching and bistability in a degenerated two-level atomic medium under an external magnetic field. Applied Optics, 58(16), 4192-4199.

Hoang, M. D., Luong, T. Y. N., Dinh, X. K., & Nguyen, H. B. (2020). Controllable ultraslow optical solitons in a degenerated two-level atomic medium under EIT assisted by a magnetic field. Scientific Reports, 10(1), 15298.

Jafarzadeh, H., Sahrai, M., & Jamshidi-Ghaleh, K. (2014). Controlling the optical bistability in a Λ-type atomic system via incoherent pump field. Applied Physics B, 117, 927-933.

Joshi, A., Brown, A., Wang, H., & Xiao, M. (2003). Controlling optical bistability in a three-level atomic system. Physical Review A, 67, 041801.

Joshi, A., & Xiao, M. (2012). Controlling steady-state and dynamical properties of atomic optical bistability. World Scientific Publishing Co.

Joshi, A., Yang, W., & Xiao, M. (2003). Effect of quantum interference on optical bistability in the three-level V-type atomic system. Physical Review A, 68, 015806.

Ngo, Q. M., Le, K., & Lam, V. (2012). Optical bistability based on guided-mode resonances in photonic crystal slabs. Journal of the Optical Society of America B, 29(6), 1291-1295.

Ngo, Q. M., Kim, S., Lee, J., & Lim, H. (2012). All-optical switches based on multiple cascaded resonators with reduced switching intensity-response time products. Journal of Lightwave Technology, 30(22), 3525-3531.

Rosenberger, A. T., Orozco, L. A., & Kimble, H. J. (1983). Observation of absorptive bistability with two-level atoms in a ring cavity. Physical Review A, 28, 2569-2572.

Steck, D. A. (2019). Rubidium 87 D line data [White paper]. http://steck.us/alkalidata.

Yan, M., Rickey, E. G., & Zhu, Y. (2001). Observation of absorptive photon switching by quantum interference. Physical Review A, 64(4), 041801.

Zhang, D., Yu, R., Li, J., Ding, C., & Yang, X. (2013). Laser-polarization-dependent and magnetically controlled optical bistability in diamond nitrogen-vacancy centers. Physics Letters A, 377(38), 2621-2627.

Zibrov, A. S., Lukin, M. D., Nikonov, D. E., Hollberg, L., Scully, M. O., Velichansky, V. L., & Robinson, H. G. (1995). Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb. Physical Review Letters, 75(8), 1499-1502.




Volume and Issues


Natural Sciences and Technology

How to Cite

Phuong, L. T. M., Khoa, D. X., Bang, N. H., Thanh, T. D., Anh, N. T., Hien, N. T. T., & Dong, H. M. (2021). OPTICAL BISTABILITY IN A DEGENERATE TWO-LEVEL EIT MEDIUM UNDER THE INFLUENCE OF AN EXTERNAL MAGNETIC FIELD: AN ANALYTICAL APPROACH. Dalat University Journal of Science, 11(4), 13-24. https://doi.org/10.37569/DalatUniversity.11.4.872(2021)