BOUNDS FOR VOLUMES OF SUB-LEVEL SETS OF POLYNOMIALS AND APPLICATIONS

Authors

  • Ta Le Loi Dalat University, Viet Nam
  • Pham Minh Quy Dalat University, Viet Nam

DOI:

https://doi.org/10.37569/DalatUniversity.12.2.875(2022)

Keywords:

Oscillatory integral, Polynomial, Singular integral, Sub-level set.

Abstract

In this paper, we present some explicit exponents in the estimates for the volumes of sub-level sets of polynomials on bounded sets and applications to the decay of oscillatory integrals and the convergence of singular integrals.

Downloads

Download data is not yet available.

References

Arnold, V. I., Gusein-Zade, S. M, & Varchenko, A. N. (1988). Singularities of differentiable maps: Vol. II. Monodromy and asymptotics of integrals (Monographs in mathematics, Vol. 83). Birkhäuser. https://doi.org/10.1007/978-1-4612-3940-6

Carbery, A., Christ, M., & Wright, J. (1999). Multidimensional van der Corput and sublevel set estimates. Journal of the American Mathematical Society, 12(4), 981-1015. https://doi.org/10.1090/S0894-0347-99-00309-4

Cluckers, R., & Miller, D. J. (2016). Bounding the decay of oscillatory integrals with a constructible amplitude function and a globally subanalytic phase function. Journal of Fourier Analysis and Applications, 22(1), 215-236. https://doi.org/10.1007/s00041-015-9421-2

Nguyen, Q. D., Dau, H. H., Phạm, T. S., & Hoang, T. A. (2018). Volume estimates of sublevel sets of real polynomials. Annales Polonici Mathematici, 121(2), 157-174. https://doi.org/10.4064/ap170913-25-4

Federer, H. (1969). Geometric measure theory. Springer-Verlag.

Lasserre, J. B. (2015). A generalization of Löwner-John’s ellipsoid theorem. Mathematical Programming, Series A, 152(1-2), 559-591. https://doi.org/10.1007/s10107-014-0798-5

Ta, L. L. (2021). Volumes of sub-level sets and the decay of oscillatory integrals. Journal of Mathematical Inequalities, 15(2), 767-779. https://doi.org/10.7153/jmi-2021-15-54

Morozov, A. Y., & Shakirov, Sh. R. (2009). Introduction to integral discriminants. Journal of High Energy Physics, 12, 1-35. https://iopscience.iop.org/article/10.1088/1126-6708/2009/12/002/pdf

Morozov, A. Y., & Shakirov, Sh. R. (2010). New and old results in resultant theory. Theoretical and Mathematical Physics, 163, 587-617. https://doi.org/10.1007/s11232-010-0044-0

Parusiński, A. (1994). Lipschitz stratification of subanalytic sets. Annales scientifiques de l’É.N.S., série 4, 27(6), 661-696. https://doi.org/10.24033/asens.1703

Phong, D. H., Stein, E. M., & Sturm, J. A. (1999). On the growth and stability of real-analytic functions. American Journal of Mathematics, 121(3), 519-554. https://doi.org/10.1353/ajm.1999.0023

Rogers, K. M. (2005). Sharp van der Corput estimates and minimal divided differences. Proceedings of the American Mathematical Society, 133(12), 3543-3550. https://doi.org/10.1090/S0002-9939-05-07918-9

Stein, E. M. (1993). Harmonic analysis: Real-variable methods, orthogonality and oscillatory integrals. Princeton University Press. https://doi.org/10.1515/9781400883929

Downloads

Published

28-01-2022

Volume and Issues

Section

Natural Sciences and Technology

How to Cite

Ta, L. L., & Pham, M. Q. (2022). BOUNDS FOR VOLUMES OF SUB-LEVEL SETS OF POLYNOMIALS AND APPLICATIONS. Dalat University Journal of Science, 12(2), 26-39. https://doi.org/10.37569/DalatUniversity.12.2.875(2022)