BOUNDS FOR VOLUMES OF SUB-LEVEL SETS OF POLYNOMIALS AND APPLICATIONS
DOI:
https://doi.org/10.37569/DalatUniversity.12.2.875(2022)Keywords:
Oscillatory integral, Polynomial, Singular integral, Sub-level set.Abstract
In this paper, we present some explicit exponents in the estimates for the volumes of sub-level sets of polynomials on bounded sets and applications to the decay of oscillatory integrals and the convergence of singular integrals.
Downloads
References
Arnold, V. I., Gusein-Zade, S. M, & Varchenko, A. N. (1988). Singularities of differentiable maps: Vol. II. Monodromy and asymptotics of integrals (Monographs in mathematics, Vol. 83). Birkhäuser. https://doi.org/10.1007/978-1-4612-3940-6
Carbery, A., Christ, M., & Wright, J. (1999). Multidimensional van der Corput and sublevel set estimates. Journal of the American Mathematical Society, 12(4), 981-1015. https://doi.org/10.1090/S0894-0347-99-00309-4
Cluckers, R., & Miller, D. J. (2016). Bounding the decay of oscillatory integrals with a constructible amplitude function and a globally subanalytic phase function. Journal of Fourier Analysis and Applications, 22(1), 215-236. https://doi.org/10.1007/s00041-015-9421-2
Nguyen, Q. D., Dau, H. H., Phạm, T. S., & Hoang, T. A. (2018). Volume estimates of sublevel sets of real polynomials. Annales Polonici Mathematici, 121(2), 157-174. https://doi.org/10.4064/ap170913-25-4
Federer, H. (1969). Geometric measure theory. Springer-Verlag.
Lasserre, J. B. (2015). A generalization of Löwner-John’s ellipsoid theorem. Mathematical Programming, Series A, 152(1-2), 559-591. https://doi.org/10.1007/s10107-014-0798-5
Ta, L. L. (2021). Volumes of sub-level sets and the decay of oscillatory integrals. Journal of Mathematical Inequalities, 15(2), 767-779. https://doi.org/10.7153/jmi-2021-15-54
Morozov, A. Y., & Shakirov, Sh. R. (2009). Introduction to integral discriminants. Journal of High Energy Physics, 12, 1-35. https://iopscience.iop.org/article/10.1088/1126-6708/2009/12/002/pdf
Morozov, A. Y., & Shakirov, Sh. R. (2010). New and old results in resultant theory. Theoretical and Mathematical Physics, 163, 587-617. https://doi.org/10.1007/s11232-010-0044-0
Parusiński, A. (1994). Lipschitz stratification of subanalytic sets. Annales scientifiques de l’É.N.S., série 4, 27(6), 661-696. https://doi.org/10.24033/asens.1703
Phong, D. H., Stein, E. M., & Sturm, J. A. (1999). On the growth and stability of real-analytic functions. American Journal of Mathematics, 121(3), 519-554. https://doi.org/10.1353/ajm.1999.0023
Rogers, K. M. (2005). Sharp van der Corput estimates and minimal divided differences. Proceedings of the American Mathematical Society, 133(12), 3543-3550. https://doi.org/10.1090/S0002-9939-05-07918-9
Stein, E. M. (1993). Harmonic analysis: Real-variable methods, orthogonality and oscillatory integrals. Princeton University Press. https://doi.org/10.1515/9781400883929
Downloads
Published
Volume and Issues
Section
Copyright & License
Copyright (c) 2022 Ta Le Loi, Pham Minh Quy.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.