DISPERSION RELATIONS IN BILAYER GRAPHENE AT FINITE TEMPERATURE

Authors

  • Nguyen Van Men An Giang University - Vietnam National University Ho Chi Minh City, Viet Nam

DOI:

https://doi.org/10.37569/DalatUniversity.11.4.882(2021)

Keywords:

Bilayer graphene, Dispersion relations, Dynamical dielectric function, Finite temperature, Random-phase approximation.

Abstract

It is well-known that material technology is considered as one of the scientific fields attracting a lot of attention from scientists. Recently, graphene, a perfect two-dimensional structure, has attracted a large amount of interest from researchers due to its unique properties and possible applications in a variety of technological fields. The dispersion relations in graphene demonstrate that this material can be used to create plasmonic devices with potentially more features and less energy consumption than recent semiconductors. This paper calculates the dispersion relations in a bilayer graphene structure at finite temperatures using the random-phase approximation. The numerical results show that as temperature increases from zero, the plasmon frequency decreases slightly near the Dirac points and then increases noticeably. In large wave vector regions, the plasmon frequency behaves as an increasing function of temperature. The contribution of carrier density to plasmon frequency in the bilayer graphene system diminishes when temperature effects are taken into account. We observed that temperature significantly affects the dispersion relations in bilayer graphene systems; therefore, this factor should not be neglected in efforts to improve models or in comparisons with experimental results.

Downloads

Download data is not yet available.

References

Alonzo-González, P., Nikitin, A. Y., Gao, Y., Woessner, A., Lundeberg, M. B., Principi, A., Forcellini, N., Yan, W., Vélez, S., Huber, A. J., Watanabe, K., Taniguchi, T., Casanova, F., Hueso, L. E., Polini, M., Hone, J., Koppens, H. L., & Hillenbrand, R. (2017). Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. Nature Nanotechnology, 12, 31-35.

Das Sarma, S., Hwang, E. H., & Rossi, E. (2010). Theory of carrier transport in bilayer graphene. Physical Review B, 81, 161407.

Das Sarma, S., Shaffique, A., Hwang, E. H., & Rossi, E. (2011). Electronic transport in two-dimensional graphene. Reviews of Modern Physics, 83, 407-470.

Dinh, V. T., & Nguyen, Q. K. (2013). Plasmon modes of double-layer graphene at finite temperature. Physica E: Low-dimensional Systems and Nanostructures, 54, 267-272.

Dong, T. K. P., & Nguyen, V. M. (2019). Plasmon modes in 3-layer graphene structures: Inhomogeneity effects. Physics Letters A, 383(33), 125971.

Hwang, E. H., & Das Sarma, S. (2007). Dielectric function, screening, and plasmons in two-dimensional graphene. Physical Review B, 75, 205418.

Hwang, E. H., & Das Sarma, S. (2009). Exotic plasmon modes of double layer graphene. Physical Review B, 80, 205405.

Jiang, B. -Y., Ni, G. -X., Addison, Z., Shi, J. K., Liu, X., Zhao, S. Y. F., Kim, P., Mele, E. J., Basov, D. N., & Fogler, M. M. (2017). Plasmon reflections by topological electronic boundaries in bilayer graphene. Nano Letters, 17, 7080-7085.

Ju, L., Geng, B., Horng, J., Girit, C., Martin, M., Hao, Z., Bechtel, H. A., Liang, X., Zetti, A., Shen, Y. -R., & Wang, F. (2011). Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotechnology, 6(10), 630-634.

Lundeberg, M. B., Gao, Y., Woessner, A., Tan, C., Alonso-González, P., Watanabe, K., Taniguchi, T., Hone, J., Hillenbrand, R., & Koppens, F. H. L. (2017). Thermoelectric detection and imaging of propagating graphene plasmons. Nature Materials, 16(2), 204-207.

Lv, M., & Wan, S. (2010). Screening-induced transport at finite temperature in bilayer graphene. Physical Review B, 81, 195409.

Nguyen, V. M., & Dong, T. K. P. (2018). Plasmon modes in bilayer-graphene-GaAs heterostructures including layer-thickness and exchange-correlation effects. International Journal of Modern Physics B, 32(23), 1850256.

Nguyen, V. M., & Dong, T. K. P. (2019). Plasmon modes in graphene GaAs heterostructures at finite temperature. International Journal of Modern Physics B, 33(16), 1950174.

Nguyen, V. M., & Nguyen, Q. K. (2018). Plasmon modes in Dirac-Schrödinger hybrid electron systems including layer-thickness and exchange-correlation effects. Canadian Journal of Physics, 96(6), 615-621.

Nguyen, V. M., Nguyen, Q. K., & Dong, T. K. P. (2019a). Plasmon modes in double bilayer graphene heterostructures. Solid State Communications, 294, 43-48.

Nguyen, V. M., Nguyen, Q. K., & Dong, T. K. P. (2019b). Plasmon modes in MLG-2DEG heterostructures: Temperature effects. Physics Letters A, 183(12), 1364-1370.

Nguyen, V. M., Nguyen, Q. K., & Dong, T. K. P. (2019c). Plasmon modes in N-layer bilayer graphene structures. Solid State Communications, 298, 113647.

Nguyen, V. M., Nguyen, Q. K., & Dong, T. K. P. (2020). Plasmon modes in double-layer gapped graphene. Physica E: Low-dimensional Systems and Nanostructures, 118, 113859.

Nguyen, V. M., Nguyen, Q. K., & Dong, T. K. P. (2021). Collective excitations in spin-polarized bilayer graphene. Journal of Physics: Condensed Matter, 33(10), 105301.

Ni, G. X., McLeod, A. S., Sun, Z., Wang, L., Xiong, L., Post, K. W., Sunku, S. S, Jiang, B. -J., Hone, J., Dean, C. R., Fogler, M. M., & Basov, D. N. (2018). Fundamental limits of graphene plasmonics. Nature, 557, 530-533.

Ni, G. X., Wang, L., Goldflam, M. D., Wagner, M., Fei, Z., McLeod, A. S., Liu, M. K., Kellmann, F., Ozyilmaz, B., Castro-Neto, A. H., Hone, J., Fogler, M. M., & Basov, D. N. (2016). Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene. Nature Photonics, 10, 244-247.

Patel, D. K. (2015). Transport properties of monolayer and bilayer graphene [Doctoral dissertation, Maharaja Sayajirao University of Baroda, India].

Politano, A., Argurio, P., Profio, G. D., Sanna, V., Cupolillo, A., Chakraborty, S., Arafat, H. A., & Curcio, E. (2017). Photothermal membrane distillation for seawater desalination. Advanced Materials, 29(2), 1603504.

Politano, A., Cupolillo, A., Profio, G. D., Arafat, H. A., Chiarello, G., & Curcio, E. (2016). When plasmonics meets membrane technology. Journal of Physics: Condensed Matter, 28(36), 363003.

Ramezanali, M. R., Vazifeh, M. M., Asgari, R., Polini, M., & MacDonald, A. H. (2009). Finite-temperature screening and the specific heat of doped graphene sheets. Journal of Physics A: Mathematical and Theoretical, 42, 214015.

Sensarma, R., Hwang, E. H., & Das Sarma, S. (2010). Dynamic screening and low energy collective modes in bilayer graphene. Physical Review B, 82, 195428.

Sunku, S. S., Ni, G. X., Jiang, B. Y., Yoo, H., Sternbach, A., McLeod, A. S., Stauber, T., Xiong, L., Taniguchi, T., Watanabe, K., Kim, P., Fogler, M. M., & Basov, D. N. (2018). Photonic crystals for nano-light in moiré graphene superlattices. Science, 362(6419), 1153-1156.

Vazifehshenas, T., Amlaki, T., Farmanbar, M., & Parhizgar, F. (2010). Temperature effect on plasmon dispersions in double-layer graphene systems. Physics Letters A, 374(48), 4899-4903.

Wachsmuth, P., Hambach, R., Benner, G., & Kaiser, U. (2014). Plasmon bands in multilayer graphene. Physical Review B, 90, 235434.

Wang, X. -F., & Chakraborty, T. (2007). Coulomb screening and collective excitations in a graphene bilayer. Physical Review B, 75, 041404(R).

Yan, H., Li, X., Chandra, B., Tulevski, G., Wu, Y., Freitag, M., Zhu, W., Avouris, P., & Xia, F. (2012). Tunable infrared plasmonic devices using graphene/insulator stacks. Nature Nanotech, 7(5), 330-334.

Zhu, J. -J., Badalyan, S. M., & Peeters, F. M. (2013). Plasmonic excitations in Coulomb-coupled N-layer graphene structures. Physical Review B, 87, 085401.

Downloads

Published

22-07-2021

Volume and Issues

Section

Natural Sciences and Technology

How to Cite

Men, N. V. (2021). DISPERSION RELATIONS IN BILAYER GRAPHENE AT FINITE TEMPERATURE. Dalat University Journal of Science, 11(4), 35-44. https://doi.org/10.37569/DalatUniversity.11.4.882(2021)