KÄHLER DIFFERENTIAL MODULES AND CONFIGURATIONS OF POINTS IN \(\mathbb{P}^2\)

Authors

  • Tran Nguyen Khanh Linh University of Education, Hue University, Viet Nam
  • Le Ngoc Long University of Education, Hue University, Viet Nam

DOI:

https://doi.org/10.37569/DalatUniversity.12.2.887(2022)

Keywords:

Configuration of points, Finite set of points, Hilbert function, Kähler differential module.

Abstract

Given a finite set of points in the projective plane, we use the module of Kähler differentials to investigate the configurations of these points. More precisely, depending on the values of the Hilbert function of the module of Kähler differential 3-forms, we determine whether the set of points lies on a nonsingular conic, on two different lines, or on a single line.

 

Downloads

Download data is not yet available.

References

ApCoCoA Team. (2021). Apcocoa: Applied computations in commutative algebra. ApCoCoAWiki. http://apcocoa.uni-passau.de

de Dominicis, G., & Kreuzer, M. (1999). Kähler differentials for points in Pn. Journal of Pure and Applied Algebra, 141(2), 153-173. https://doi.org/10.1016/S0022-4049(98)00016-4

Kreuzer, M., Linh, T. N. K., & Long, L. N. (2015). Kähler differentials and Kähler differents for fat point schemes. Journal of Pure and Applied Algebra, 219(10), 4479-4509. https://doi.org/10.1016/j.jpaa.2015.02.028

Kreuzer, M., Linh, T. N. K., & Long, L. N. (2019). Kähler differential algebras for 0-dimensional schemes. Journal of Algebra, 501, 255-284. https://doi.org/10.1016/j.jalgebra.2017.12.023

Kreuzer, M., & Robbiano, L. (2005). Computational commutative algebra 2. Springer.

Kunz, E. (1986). Kähler differentials. Vieweg & Teubner Verlag Wiesbaden. https://doi.org/10.1007/978-3-663-14074-0

Kunz, E. (2005). Introduction to plane algebraic curves. Birkhäuser.

Scheja, G., & Storch, U. (1988). Lehrbuch der algebra, Unter Einschluß der linearen Algebra, Teil 2. B.G. Vieweg & Teubner Verlag Wiesbaden. https://doi.org/10.1007/978-3-322-80092-3

Tohăneanu, Ş. O., & Van Tuyl, A. (2013). Bounding invariants of fat points using a coding theory construction. Journal of Pure and Applied Algebra, 217(2), 269-279. https://doi.org/10.1016/j.jpaa.2012.06.004

Tran, N. K. L. (2015). Kähler differential modules for 0-dimensional schemes and applications [Doctoral dissertation, University of Passau, German].

Ueno, K. (1999). Algebraic geometry 1: From algebraic varieties to schemes. American Mathematical Society. https://doi.org/10.1090/mmono/185

Downloads

Published

28-01-2022

Volume and Issues

Section

Natural Sciences and Technology

How to Cite

Tran, N. K. L., & Le, N. L. (2022). KÄHLER DIFFERENTIAL MODULES AND CONFIGURATIONS OF POINTS IN \(\mathbb{P}^2\). Dalat University Journal of Science, 12(2), 48-60. https://doi.org/10.37569/DalatUniversity.12.2.887(2022)