KÄHLER DIFFERENTIAL MODULES AND CONFIGURATIONS OF POINTS IN \(\mathbb{P}^2\)
DOI:
https://doi.org/10.37569/DalatUniversity.12.2.887(2022)Keywords:
Configuration of points, Finite set of points, Hilbert function, Kähler differential module.Abstract
Given a finite set of points in the projective plane, we use the module of Kähler differentials to investigate the configurations of these points. More precisely, depending on the values of the Hilbert function of the module of Kähler differential 3-forms, we determine whether the set of points lies on a nonsingular conic, on two different lines, or on a single line.
Downloads
References
ApCoCoA Team. (2021). Apcocoa: Applied computations in commutative algebra. ApCoCoAWiki. http://apcocoa.uni-passau.de
de Dominicis, G., & Kreuzer, M. (1999). Kähler differentials for points in Pn. Journal of Pure and Applied Algebra, 141(2), 153-173. https://doi.org/10.1016/S0022-4049(98)00016-4
Kreuzer, M., Linh, T. N. K., & Long, L. N. (2015). Kähler differentials and Kähler differents for fat point schemes. Journal of Pure and Applied Algebra, 219(10), 4479-4509. https://doi.org/10.1016/j.jpaa.2015.02.028
Kreuzer, M., Linh, T. N. K., & Long, L. N. (2019). Kähler differential algebras for 0-dimensional schemes. Journal of Algebra, 501, 255-284. https://doi.org/10.1016/j.jalgebra.2017.12.023
Kreuzer, M., & Robbiano, L. (2005). Computational commutative algebra 2. Springer.
Kunz, E. (1986). Kähler differentials. Vieweg & Teubner Verlag Wiesbaden. https://doi.org/10.1007/978-3-663-14074-0
Kunz, E. (2005). Introduction to plane algebraic curves. Birkhäuser.
Scheja, G., & Storch, U. (1988). Lehrbuch der algebra, Unter Einschluß der linearen Algebra, Teil 2. B.G. Vieweg & Teubner Verlag Wiesbaden. https://doi.org/10.1007/978-3-322-80092-3
Tohăneanu, Ş. O., & Van Tuyl, A. (2013). Bounding invariants of fat points using a coding theory construction. Journal of Pure and Applied Algebra, 217(2), 269-279. https://doi.org/10.1016/j.jpaa.2012.06.004
Tran, N. K. L. (2015). Kähler differential modules for 0-dimensional schemes and applications [Doctoral dissertation, University of Passau, German].
Ueno, K. (1999). Algebraic geometry 1: From algebraic varieties to schemes. American Mathematical Society. https://doi.org/10.1090/mmono/185
Downloads
Published
Volume and Issues
Section
Copyright & License
Copyright (c) 2022 Tran Nguyen Khanh Linh, Le Ngoc Long.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.