GROTHENDIECK RINGS OF DEFINABLE SUBASSIGNMENTS AND EQUIVARIANT MOTIVIC MEASURES

Authors

  • Le Quy Thuong University of Science, Vietnam National University, Viet Nam

DOI:

https://doi.org/10.37569/DalatUniversity.12.2.902(2022)

Keywords:

Definable subassignments, Grothendieck ring, Measurable subassignments, Motivic measure.

Abstract

This paper studies categories of definable subassignments with some category equivalences to semi-algebraic and constructible subsets of arc spaces of algebraic varieties. These equivalences lead to the identity of certain Grothendieck rings, which allows us to compare the motivic measure of Cluckers-Loeser with that of Denef-Loeser for certain classes of definable subassignments.

Downloads

Download data is not yet available.

References

Cely, J., & Raibaut, M. (2019). On the commutativity of pull-back and push-forward functors on motivic constructible functions. The Journal of Symbolic Logic, 84(3), 1252-1278. https://doi.org/10.1017/jsl.2019.31

Cluckers, R., Gordon, J., & Halupczok, I. (2014). Motivic functions, integrability, and applications to harmonic analysis on p-adic groups. Electronic Research Announcements, 21, 137-152. https://doi.org/10.3934/era.2014.21.137

Cluckers, R., Hales, T., & Loeser, F. (2011). Transfer principle for the fundamental lemma. In L. Clozel, M. Harris, J.-P. Labesse, & B.-C. Ngô. (Eds.), On the stabilization of the trace formula (pp. 309-348). International Press.

Cluckers, R., & Loeser, F. (2005). Ax-Kochen-Eršov theorems for p-adic integrals and motivic integration. In F. Bogomolov & Y. Tschinkel (Eds.), Geometric methods in algebra and number theory (pp. 109-137). Birkhäuser. https://doi.org/10.1007/0-8176-4417-2_5

Cluckers, R., & Loeser, F. (2008). Constructible motivic functions and motivic integration. Inventiones Mathematicae, 173(1), 23-121. https://doi.org/10.1007/s00222-008-0114-1

Cluckers, R., & Loeser, F. (2010). Constructible exponential functions, motivic Fourier transform and transfer principle. Annals of Mathematics, 171(2), 1011-1065. https://doi.org/10.4007/annals.2010.171.1011

Denef, J., & Loeser, F. (1998). Motivic Igusa zeta functions. Journal of Algebraic Geometry, 7(3), 505-537.

Denef, J., & Loeser, F. (1999). Germs of arcs on singular algebraic varieties and motivic integration. Inventiones Mathematicae, 135, 201-232. https://doi.org/10.1007/s002220050284

Denef, J., & Loeser, F. (2001). Definable sets, motives, and p-adic integrals. Journal of the American Mathematical Society, 14, 429-469. https://doi.org/10.1090/S0894-0347-00-00360-X

Gordon, J., & Yaffe, Y. (2009). An overview of arithmetic motivic integration. In C. Cunningham & M. Nevins (Eds.), Ottawa lectures on admissible representations of reductive p-adic groups (pp. 113-150). American Mathematical Society. https://doi.org/10.1090/fim/026/05

Hrushovski, E., & Kazhdan, D. (2006). Integration in valued fields. In V. Ginzburg (Ed.), Algebraic geometry and number theory (pp. 261-405). Birkhäuser. https://doi.org/10.1007/978-0-8176-4532-8_4

Hrushovski, E., & Loeser, F. (2016). Non-Archimedean tame topology and stably dominated types. Princeton University Press. https://doi.org/10.1515/9781400881222

Lê, Q. T., & Nguyen, H. D. (2020). Equivariant motivic integration and proof of the integral identity conjecture for regular functions. Mathematische Annalen, 376, 1195-1223. https://doi.org/10.1007/s00208-019-01940-2

Loeser, F., & Sebag, J. (2003). Motivic integration on smooth rigid varieties and invariants of degenerations. Duke Mathematics Journal, 119(2), 315-344. https://doi.org/10.1215/S0012-7094-03-11924-9

Nicaise, J. (2009). A trace formula for rigid varieties, and motivic Weil generating series for formal schemes. Mathematische Annalen, 343(2), 285-349. https://doi.org/10.1007/s00208-008-0273-9

Nicaise, J., & Sebag, J. (2007). Motivic Serre invariants, ramification, and the analytic Milnor fiber. Inventiones Mathematicae, 168, 133-173. https://doi.org/10.1007/s00222-006-0029-7

Pas, J. (1989). Uniform p-adic cell decomposition and local zeta functions. Journal für die reine und angewandte Mathematik, 399, 137-172. https://doi.org/10.1515/crll.1989.399.137

Sebag, J. (2004). Intégration motivique sur les schémas formels [Motivic integration on formal schemas]. Bulletin de la Société Mathématique de France, 132(1), 1-54. https://doi.org/10.24033/bsmf.2458

Downloads

Published

28-01-2022

Volume and Issues

Section

Natural Sciences and Technology

How to Cite

Le, Q. T. (2022). GROTHENDIECK RINGS OF DEFINABLE SUBASSIGNMENTS AND EQUIVARIANT MOTIVIC MEASURES. Dalat University Journal of Science, 12(2), 86-112. https://doi.org/10.37569/DalatUniversity.12.2.902(2022)