• Pham Do Chung Hanoi National University of Education, Viet Nam
  • Le Thi Mai Oanh Hanoi National University of Education, Viet Nam
  • Nguyen Van Minh Hanoi National University of Education, Viet Nam



Composites, Magnetization, Parent phase.


We synthesized 0-3 type (1-x)PbTiO3-xNiFe2O4 (x = 0.0-0.5) multiferroic composites with two independently crystallized parent phases by the sol-gel method. Structural, surface morphology, vibrational, optical, and magnetic characteristics were investigated by X-ray diffraction (XRD), SEM, Raman scattering, UV-vis absorption, and magnetization (M-H) measurements, respectively. The XRD result showed that the lattice parameter a of the PbTiO3 (PTO) phase decreased while lattice parameter c increased after compositing, leading to a decrease in the tetragonal ratio c/a. SEM images indicated that the NiFe2O4 (NFO) crystals that crystallized later are small and adhere to the surface of the large PTO particles. The strong cohesion between the two components was also revealed by the gradual shift of the Raman peaks to the lower wavelength and the reduction of the Raman intensity as the NFO content increased. The UV-vis absorption result showed the co-absorption spectra of the parent phases in the composites. Magnetization curves presented a sharp increase in saturation magnetization MS with NFO content from 0.014 emu/g for the PTO sample to 14.360 emu/g for the composite containing 50 mol% NFO. This study indicates an effective method in the search for multilayer composites.


Download data is not yet available.


Adhlakha, N., Yadav, K. L., & Singh, R. (2015). BiFeO3–CoFe2O4–PbTiO3 composites: Structural, multiferroic, and optical characteristics. Journal of Materials Science, 50(5), 2073-2084.

Ahlawat, A., Satapathy, S., Choudhary, R. J., Shirolkar, M. M., Singh, M. K., & Gupta, P. K. (2016). Tunable room temperature magnetoelectric response of SmFeO3/poly (vinylidene fluoride) nanocomposite films. RSC Advances, 6(50), 44843-44850.

Bichurin, M. I., & Petrov, V. M. (2010). Magnetoelectric effect in magnetostriction-piezoelectric multiferroics. Low Temperature Physics, 36(6), 544-549.

Burns, G., & Scott, B. A. (1973). Lattice modes in ferroelectric perovskite: PbTiO3. Physical Review B, 7(7), 3088-3101.

Dileep, K., Loukya, B., Pachauri, N., Gupta, A., & Datta, R. (2014). Probing optical band gaps at the nanoscale in NiFe2O4 and CoFe2O4 epitaxial films by high resolution electron energy loss spectroscopy. Journal of Applied Physics, 116(10), 103505.

Fiebig, M. (2005). Revival of the magnetoelectric effect. Journal of Physics D: Applied Physics, 38(8), R123-R152.

Le, T. M. O., Danh, B. D., & Nguyen, V. N. (2015). Physical properties of sol-gel lead nickel titanate powder Pb(Ti1-xNix)O3. Materials Transactions, 56(9), 1358-1361.

Liu, G., Nan, C. -W., Xu, Z. K., & Chen, H. (2005). Coupling interaction in multiferroic BaTiO3–CoFe2O4 nanostructures. Journal of Physics D: Applied Physics, 38(14), 2321.

Liu, X. -M., Fua, S. -Y., & Huang, C. -J. (2005). Synthesis and magnetic characterization of novel CoFe2O4–BiFeO3 nanocomposites. Materials Science and Engineering B, 121(3), 255-260.

Loyau, V., Morin, V., Chaplier, G., LoBue, M., & Mazaleyrat, F. (2015). Magnetoelectric effect in layered ferrite/PZT composites: Study of the demagnetizing effect on the magnetoelectric behavior. Journal of Applied Physics, 117(18), 184102.

Meinert, M., & Reiss, G. (2014). Electronic structure and optical band gap determination of NiFe2O4. Journal of Physics: Condensed Matter, 26(11), 11550.

Moret, M. P., Devillers, M. A. C., Wörhoff, K., & Larsen, P. K. (2002). Optical properties of PbTiO3, PbZrxTi1−xO3, and PbZrO3 films deposited by metalorganic chemical vapor on SrTiO3. Journal of Applied Physics, 92(1), 468-474.

Murakami, M., Chang, K. S., Aronova, M. A., Lin, C. L., Yu, M. H., Simpers, J. H., Wuttig, M., Takeuchi, I., Gao, C., Hu, B., Lofland, S. E., Knauss, L. A., & Bendersky, L. A. (2005). Tunable multiferroic properties in nanocomposite PbTiO3–CoFe2O4 epitaxial thin films. Applied Physics Letters, 87, 112901.

Narendra Babu, S., Hsu, J. -H., Chen, Y. S., & Lin, J. G. (2011). Magnetoelectric response in lead-free multiferroic NiFe2O4–Na0.5Bi0.5TiO3 composites. Journal of Applied Physics, 109(7), 07D904.

Newnham, R. E. (1986). Composite electroceramics. Ferroelectrics, 68(1), 1-32.

Palneedi, H., Annapureddy, V., Priya, S., & Ryu, J. (2016). Status and perspectives of multiferroic magnetoelectric composite materials and applications. Actuators, 5(1), 9.

Pereira, N., Lima, A. C., Lanceros-Mendez, S., & Martins, P. (2020). Magnetoelectrics: Three centuries of research heading towards the 4.0 industrial revolution. Materials, 13(18), 4033.

Ren, Z., Xu, G., Wei, X., Liu, Y., Hou, X., Du, P., Weng, W., Shen, G., & Han, G. (2007). Room-temperature ferromagnetism in Fe-doped PbTiO3 nanocrystals. Applied Physics Letters, 91(6), 63106.

Schileo, G. (2013). Recent developments in ceramic multiferroic composites based on core/shell and other heterostructures obtained by sol-gel routes. Progress in Solid State Chemistry, 41(4), 87-98.

Shimada, T., Uratani, Y., & Kitamura, T. (2012a). Vacancy-driven ferromagnetism in ferroelectric PbTiO3. Applied Physics Letters, 100(16), 162901.

Shimada, T., Uratani, Y., & Kitamura, T. (2012b). Emergence of ferromagnetism at a vacancy on a non-magnetic ferroelectric PbTiO3 surface: A first-principles study. Acta Materialia, 60(18), 6322-6330.

Shvartsman, V. V., Alawneh, F., Borisov, P., Kozodaev, D., & Lupascu, D. C. (2011). Converse magnetoelectric effect in CoFe2O4–BaTiO3 composites with a core–shell structure. Smart Materials and Structures, 20(7), 75006.

Tsai, C. Y., Chen, H. R., Chang, F. C., Tsai, W. C., Cheng, H. M., Chu, Y. H., Lai, C. H., & Hsieh, W. F. (2013). Stress-mediated magnetic anisotropy and magnetoelastic coupling in epitaxial multiferroic PbTiO3-CoFe2O4 nanostructures. Applied Physics Letters, 102(13), 132905.

Wang, B. Y., Wang, H. T., Singh, S. B., Shao, Y. C., Wang, Y. F., Chuang, C. H., Yeh, P. H., Chiou, J. W., Pao, C. W., Tsai, H. M., Lin, H. J., Lee, J. F., Tsai, C. Y., Hsieh, W. F., Tsai, M. H., & Pong, W. F. (2013). Effect of geometry on the magnetic properties of CoFe2O4–PbTiO3 multiferroic composites. RSC Advances, 3(21), 7884-7983.

Zeng, Z., Wu, H., Zhou, C., Qin, X., He, J., Ji, C., Deng, X., Gao, R. L., Fu, C., Cai, W., Chen, G., Wang, Z., & Lei, X. (2020). Effect of sintering temperature on magnetoelectric properties of PbTiO3/NiFe2O4 composite ceramics. Journal of Asian Ceramic Societies, 8(4), 1206-1215.

Zheng, T., Deng, H., Zhou, W., Zhai, X., Cao, H., Yu, L., Yang, P., & Chu, J. (2016). Bandgap modulation and magnetic switching in PbTiO3 ferroelectrics by transition elements doping. Ceramics International, 42(5), 6033-6038.

Zhou, W., Deng, H., Yu, L., Yang, P., & Chu, J. (2015). Magnetism switching and band-gap narrowing in Ni-doped PbTiO3 thin films. Journal of Applied Physics, 117(19), 194102.




Volume and Issues


Natural Sciences and Technology

How to Cite

Pham, C. D., Le, O. T. M., & Nguyen, M. V. (2021). STRUCTURAL, VIBRATIONAL, OPTICAL, AND MAGNETIC PROPERTIES OF 0-3 TYPE PARTICULATE PbTiO3-NiFe2O4 COMPOSITES. Dalat University Journal of Science, 11(4), 45-54.