EULER CHARACTERISTIC OF TANGO BUNDLES
DOI:
https://doi.org/10.37569/DalatUniversity.12.2.956(2022)Keywords:
Euler characteristic, Tango bundle.Abstract
We are interested in a vector bundle constructed by Tango (1976). The Tango bundle is an indecomposable vector bundle of rank \(n-1\) on the complex projective space \(\mathbb{P}^n\). In particular, we show that the Euler characteristic of the Tango bundle on \(\mathbb{P}^n\) is equal to \(2n-1\).
Downloads
References
Eisenbud, D., & Harris, J. (2016). 3264 and all that: A second course in algebraic geometry. Cambridge University Press. https://doi.org/10.1017/CBO9781139062046
Fulton, W. (1998). Intersection theory. Springer. https://doi.org/10.1007/978-1-4612-1700-8
Hartshorne, R. (1979). Algebraic vector bundles on projective spaces: A problem list. Topology, 18(2), 117-128. https://doi.org/10.1016/0040-9383(79)90030-2
Dang, T. H. (2014). Intersection theory with applications to the computation of Gromov–Witten invariants. [Doctoral dissertation, Technical University of Kaiserslautern, Germany].
Hirzebruch, F. (1978). Topological methods in algebraic geometry. Springer.
Jaczewski, K., Szurek, M., & Wisniewski, J. A. (1986). Geometry of the Tango bundle. In H. Kurke & M. Roczen (Eds.), Proceedings of the Conference on Algebraic Geometry (Berlin, Germany, 1985) (pp. 177-185). B.G. Teubner.
Okonek, C., Schneider, M., & Spindler, H. (1980). Vector bundles on complex projective spaces, with an appendix by S. I. Gelfand. Birkhäuser (Corrected reprint 2011 by Springer Basel AG). https://doi.org/10.1007/978-3-0348-0151-5
Roman, S. (1984). The umbral calculus. Academic Press.
Tango, H. (1976). An example of indecomposable vector bundle of rank n-1 on P^n. Journal of Mathematics of Kyoto University, 16(1), 137-141. https://doi.org/10.1215/kjm/1250522965
Downloads
Published
Volume and Issues
Section
Copyright & License
Copyright (c) 2022 Nguyen Hong Cong, Dang Tuan Hiep, Nguyen Thi Mai Van.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.