THE EFFECT OF CRITICAL ELECTRIC FIELDS ON THE ELECTRONIC DISTRIBUTION OF BILAYER ARMCHAIR GRAPHENE NANORIBBONS

Authors

  • Nguyen Lam Thuy Duong Can Tho University, Viet Nam
  • Nguyen Thi Kim Quyen Can Tho University, Viet Nam
  • Pham Nguyen Huu Hanh Can Tho University, Viet Nam
  • Le Dang Khoa Can Tho University, Viet Nam
  • Ngo Van Chinh Ho Thi Ky High School, Viet Nam
  • Phan Thi Kim Loan Can Tho University, Viet Nam
  • Huynh Anh Huy Can Tho University, Viet Nam
  • Vu Thanh Tra Can Tho University, Viet Nam

DOI:

https://doi.org/10.37569/DalatUniversity.11.4.973(2021)

Keywords:

Bilayer armchair graphene nanoribbons, Electronic band structures, Parallel electric field, Perpendicular electric field.

Abstract

We employed tight-binding calculations and Green’s function formalism to investigate the effect of applied electric fields on the energy band and electronic properties of bilayer armchair graphene nanoribbons (BL-AGNRs). The results show that the perpendicular electric field has a strong impact on modifying and controlling the bandgap of BL-AGNRs. At the critical values of this electric field, distortions of energy dispersion in subbands and the formation of new electronic excitation channels occur strongly. These originate from low-lying energies near the Fermi level and move away from the zero-point with the increment of the electric field. Phase transitions and structural changes clearly happen in these materials. The influence of the parallel electric field is less important in changing the gap size, resulting in the absence of the critical voltage over a very wide range [–1.5 V; 1.5 V] for the semiconductor-insulator group. Nevertheless, it is interesting to note the powerful role of the parallel electric field in modifying the energy band and electronic distribution at each energy level. These results contribute to an overall picture of the physics model and electronic structure of BL-AGNRs under stimuli, which can be a pathway to real applications in the future, particularly for electronic devices.

Downloads

Download data is not yet available.

References

Abergel, D. S. L., Apalkov, V., Berashevich, J., Ziegler, K., & Chakraborty, T. (2010). Properties of graphene: A theoretical perspective. Advances in Physics, 59(4), 261-482. https://doi.org/10.1080/00018732.2010.487978

Abergel, D. S. L., & Fal’ko, V. I. (2007). Optical and magneto-optical far-infrared properties of bilayer graphene. Physical Review B, 75, 155430. https://doi.org/10.1103/PhysRevB.75.155430

Bai, J., Zhong, X., Jiang, S., Huang, Y., & Duan, X. (2010). Graphene nanomesh. Nature Nanotechnology, 5(3), 190-194. https://doi.org/10.1038/nnano.2010.8

Castro, E. V., Novoselov, K. S., Morozov, S. V., Peres, N. M. R., Santos, J. M. B. L. D., Nilsson, J., Guinea, F., Geim, A. K., & Neto, A. H. C. (2007). Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Physical Review Letters, 99(21), 216802. https://doi.org/10.1103/PhysRevLett.99.216802

Castro, E. V., Peres, N. M. R., Santos, J. M. B. L. D., Guinea, F., & Neto, A. H. C. (2008). Bilayer graphene: Gap tunability and edge properties. Journal of Physics: Conference Series, 129, 012002. https://doi.org/10.1088/1742-6596/129/1/012002

Chang, C. P., Huang, Y. C., Lu, C. L., Ho, J. H., Li, T. S., & Lin, M. F. (2006). Electronic and optical properties of a nanographite ribbon in an electric field. Carbon, 44(3), 508-515. https://doi.org/10.1016/j.carbon.2005.08.009

Charlier, J. C., Gonze, X., & Michenaud, J. P. (1991). First-principles study of the electronic properties of graphite. Physical Review B, 43(6), 4579-4589. https://doi.org/10.1103/PhysRevB.43.4579

Cresti, A., Grosso, G., & Parravicini, G. P. (2008). Valley-valve effect and even-odd chain parity in p-n graphene junctions. Physical Review B, 77(23), 233402. https://doi.org/10.1103/PhysRevB.77.233402

Datta, S. (2005). Quantum transport: Atom to transistor. Cambridge University Press.

Dubois, S. M. M., Zanolli, Z., Declerck, X., & Charlier, J. C. (2009). Electronic properties and quantum transport in graphene-based nanostructures. The European Physical Journal B, 72, 1-24. https://doi.org/10.1140/epjb/e2009-00327-8

Khaliji, K., Noei, M., Tabatabaei, S-M., Pourfath, M., Fathipour, M., & Abdi, Y. (2013). Tunable bandgap in bilayer armchair graphene nanoribbons: Concurrent influence of electric field and uniaxial strain. IEEE Transactions on Electron Devices, 60(8), 2464-2470. https://doi.org/10.1109/TED.2013.2266300

Lam, K. T., & Liang, G. (2008). An ab initio study on energy gap of bilayer graphene nanoribbons with armchair edges. Applied Physics Letters, 92(22), 223106. https://doi.org/10.1063/1.2938058

Li, Z. Q., Henriksen, E. A., Jiang, Z., Hao, Z., Martin, M. C., Kim, P., Stormer, H. L., & Basov, D. N. (2009). Band structure asymmetry of bilayer graphene revealed by infrared spectroscopy. Physical Review Letters, 102(3), 037403. https://doi.org/10.1103/PhysRevLett.102.037403

Loan, P. T. K., Zhang, W., Lin, C. T., Wei, K. H., Li, L. J., & Chen, C. H. (2014). Graphene/MoS2 heterostructures for ultrasensitive detection of DNA hybridisation. Advanced Materials, 26(28), 4838-4844. https://doi.org/10.1002/adma.201401084

Lu, C. L., Chang, C. P., Huang, Y. C., Chen, R. B., & Lin, M. L. (2006). Influence of an electric field on the optical properties of few-layer graphene with AB stacking. Physical Review B, 73(14), 144427. https://doi.org/10.1103/PhysRevB.73.144427

Mak, K. F., Lui, C. H., Shan, J., & Heinz, T. F. (2009). Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. Physical Review Letters, 102(25), 256405. https://doi.org/10.1103/PhysRevLett.102.256405

Malard, L. M., Elias, D. C., Alves, E. S., & Pimenta, M. A. (2008). Observation of distinct electron-phonon couplings in gated bilayer graphene. Physical Review Letters, 101(25), 257401. https://doi.org/10.1103/PhysRevLett.101.257401

McCann, E. (2006). Asymmetry gap in the electronic band structure of bilayer graphene. Physical Review B, 74(16), 161403. https://doi.org/10.1103/PhysRevB.74.161403

McCann, E., & Koshino, M. (2013). The electronic properties of bilayer graphene. Reports on Progress in Physics, 76(5), 056503. https://doi.org/10.1088/0034-4885/76/5/056503

Min, H., Sahu, B., Banerjee, S. K., & MacDonald, A. H. (2007). Ab initio theory of gate induced gaps in graphene bilayers. Physical Review B, 75(15), 155115. https://doi.org/10.1103/PhysRevB.75.155115

Nanda, B. R. K., & Satpathy, S. (2009). Strain and electric field modulation of the electronic structure of bilayer graphene. Physical Review B, 80, 165430. https://doi.org/10.1103/PhysRevB.80.165430

Neto, A. H. C., Guinea, F., Peres, N. M. R., Novoselov, K. S., & Geim, A. K. (2009). The electronic properties of graphene. Reviews of Modern Physics, 81(1), 109. https://doi.org/10.1103/RevModPhys.81.109

Novoselov, K. S., Fal’ko, V. I., Colombo, L., Gellert, P. R., Schwab, M. G., & Kim, K. (2012). A roadmap for graphene. Nature, 490(7419), 192-200. https://doi.org/10.1038/nature11458

Ohta, T., Bostwick, A., Seyller, T., Horn, K., & Rotenberg, E. (2006). Controlling the electronic structure of bilayer graphene. Science, 313(5789), 951-954. https://doi.org/10.1126/science.1130681

Ruseckas, J., Juzeliūnas, G., & Zozoulenko, I. V. (2011). Spectrum of π electrons in bilayer graphene nanoribbons and nanotubes: An analytical approach. Physical Review B, 83(3), 035403. https://doi.org/10.1103/PhysRevB.83.035403

Sahu, B., Min, H., & Banerjee, S. K. (2010). Effects of magnetism and electric field on the energy gap of bilayer graphene nanoflakes. Physical Review B, 81(4), 045414. https://doi.org/10.1103/PhysRevB.81.045414

Scholz, A., Stauber, T., & Schliemann, J. (2012). Dielectric function, screening, and plasmons of graphene in the presence of spin-orbit interactions. Physical Review B, 86(19), 195424. https://doi.org/10.1103/PhysRevB.86.195424

Son, Y. W., Cohen, M. L., & Louie, S. G. (2006). Energy gaps in graphene nanoribbons. Physical Review Letters, 97(21), 216803. https://doi.org/10.1103/PhysRevLett.97.216803

Sun, S. J., & Chang, C. P. (2008). Ballistic transport in bilayer nano-graphite ribbons under gate and magnetic fields. The European Physical Journal B, 64, 249-255. https://doi.org/10.1140/epjb/e2008-00309-4

Vũ, T. T., Nguyễn, T. K. Q., Huỳnh, A. H., Phan, T. K. L., & Trần, V. T. (2017). Modulation of bandgap in bilayer armchair graphene ribbons by tuning vertical and transverse electric fields. Superlattices and Microstructures, 102, 451-458. https://doi.org/10.1016/j.spmi.2016.12.031

Vũ, T. T., Nguyễn, T. K. Q., Nguyễn, T. M. T., Nguyễn, V. C., & Trần, V. T. (2018). Enhancement of the Seebeck effect in bilayer armchair graphene nanoribbons by tuning the electric fields. Superlattices and Microstructures, 113, 616-622. https://doi.org/10.1016/j.spmi.2017.11.042

Vũ, T. T., & Trần, V. T. (2016). Electric gating induced bandgaps and enhanced Seebeck effect in zigzag bilayer graphene ribbons. Semiconductor Science and Technology, 31(8), 085002. https://doi.org/10.1088/0268-1242/31/8/085002

Xu, H., Heinzel, T., & Zozoulenko, I. V. (2009). Edge disorder and localization regimes in bilayer graphene nanoribbons. Physical Review B, 80(4), 045308. https://doi.org/10.1103/PhysRevB.80.045308

Zhang, Y., Tang, T. T., Girit, C., Hao, Z., Martin, M. C., Zettl, A., Crommie, M. F., Shen, Y. R., & Wang, F. (2009). Direct observation of a widely tunable bandgap in bilayer graphene. Nature, 459(7248), 820-823. https://doi.org/10.1038/nature08105

Zhong, X., Pandey, R., & Karna, S. P. (2012). Stacking dependent electronic structure and transport in bilayer graphene nanoribbons. Carbon, 50(3), 784-790. https://doi.org/10.1016/j.carbon.2011.09.033

Downloads

Published

06-12-2021

Volume and Issues

Section

Natural Sciences and Technology

How to Cite

Nguyen, L. T. D., Nguyen, T. K. Q., Pham, N. H. H., Le, D. K., Ngo, V. C., Phan, T. K. L., Huynh, A. H., & Vu, T. T. (2021). THE EFFECT OF CRITICAL ELECTRIC FIELDS ON THE ELECTRONIC DISTRIBUTION OF BILAYER ARMCHAIR GRAPHENE NANORIBBONS. Dalat University Journal of Science, 11(4), 98-112. https://doi.org/10.37569/DalatUniversity.11.4.973(2021)