THE EFFECT OF CRITICAL ELECTRIC FIELDS ON THE ELECTRONIC DISTRIBUTION OF BILAYER ARMCHAIR GRAPHENE NANORIBBONS
DOI:
https://doi.org/10.37569/DalatUniversity.11.4.973(2021)Keywords:
Bilayer armchair graphene nanoribbons, Electronic band structures, Parallel electric field, Perpendicular electric field.Abstract
We employed tight-binding calculations and Green’s function formalism to investigate the effect of applied electric fields on the energy band and electronic properties of bilayer armchair graphene nanoribbons (BL-AGNRs). The results show that the perpendicular electric field has a strong impact on modifying and controlling the bandgap of BL-AGNRs. At the critical values of this electric field, distortions of energy dispersion in subbands and the formation of new electronic excitation channels occur strongly. These originate from low-lying energies near the Fermi level and move away from the zero-point with the increment of the electric field. Phase transitions and structural changes clearly happen in these materials. The influence of the parallel electric field is less important in changing the gap size, resulting in the absence of the critical voltage over a very wide range [–1.5 V; 1.5 V] for the semiconductor-insulator group. Nevertheless, it is interesting to note the powerful role of the parallel electric field in modifying the energy band and electronic distribution at each energy level. These results contribute to an overall picture of the physics model and electronic structure of BL-AGNRs under stimuli, which can be a pathway to real applications in the future, particularly for electronic devices.
Downloads
References
Abergel, D. S. L., Apalkov, V., Berashevich, J., Ziegler, K., & Chakraborty, T. (2010). Properties of graphene: A theoretical perspective. Advances in Physics, 59(4), 261-482. https://doi.org/10.1080/00018732.2010.487978
Abergel, D. S. L., & Fal’ko, V. I. (2007). Optical and magneto-optical far-infrared properties of bilayer graphene. Physical Review B, 75, 155430. https://doi.org/10.1103/PhysRevB.75.155430
Bai, J., Zhong, X., Jiang, S., Huang, Y., & Duan, X. (2010). Graphene nanomesh. Nature Nanotechnology, 5(3), 190-194. https://doi.org/10.1038/nnano.2010.8
Castro, E. V., Novoselov, K. S., Morozov, S. V., Peres, N. M. R., Santos, J. M. B. L. D., Nilsson, J., Guinea, F., Geim, A. K., & Neto, A. H. C. (2007). Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Physical Review Letters, 99(21), 216802. https://doi.org/10.1103/PhysRevLett.99.216802
Castro, E. V., Peres, N. M. R., Santos, J. M. B. L. D., Guinea, F., & Neto, A. H. C. (2008). Bilayer graphene: Gap tunability and edge properties. Journal of Physics: Conference Series, 129, 012002. https://doi.org/10.1088/1742-6596/129/1/012002
Chang, C. P., Huang, Y. C., Lu, C. L., Ho, J. H., Li, T. S., & Lin, M. F. (2006). Electronic and optical properties of a nanographite ribbon in an electric field. Carbon, 44(3), 508-515. https://doi.org/10.1016/j.carbon.2005.08.009
Charlier, J. C., Gonze, X., & Michenaud, J. P. (1991). First-principles study of the electronic properties of graphite. Physical Review B, 43(6), 4579-4589. https://doi.org/10.1103/PhysRevB.43.4579
Cresti, A., Grosso, G., & Parravicini, G. P. (2008). Valley-valve effect and even-odd chain parity in p-n graphene junctions. Physical Review B, 77(23), 233402. https://doi.org/10.1103/PhysRevB.77.233402
Datta, S. (2005). Quantum transport: Atom to transistor. Cambridge University Press.
Dubois, S. M. M., Zanolli, Z., Declerck, X., & Charlier, J. C. (2009). Electronic properties and quantum transport in graphene-based nanostructures. The European Physical Journal B, 72, 1-24. https://doi.org/10.1140/epjb/e2009-00327-8
Khaliji, K., Noei, M., Tabatabaei, S-M., Pourfath, M., Fathipour, M., & Abdi, Y. (2013). Tunable bandgap in bilayer armchair graphene nanoribbons: Concurrent influence of electric field and uniaxial strain. IEEE Transactions on Electron Devices, 60(8), 2464-2470. https://doi.org/10.1109/TED.2013.2266300
Lam, K. T., & Liang, G. (2008). An ab initio study on energy gap of bilayer graphene nanoribbons with armchair edges. Applied Physics Letters, 92(22), 223106. https://doi.org/10.1063/1.2938058
Li, Z. Q., Henriksen, E. A., Jiang, Z., Hao, Z., Martin, M. C., Kim, P., Stormer, H. L., & Basov, D. N. (2009). Band structure asymmetry of bilayer graphene revealed by infrared spectroscopy. Physical Review Letters, 102(3), 037403. https://doi.org/10.1103/PhysRevLett.102.037403
Loan, P. T. K., Zhang, W., Lin, C. T., Wei, K. H., Li, L. J., & Chen, C. H. (2014). Graphene/MoS2 heterostructures for ultrasensitive detection of DNA hybridisation. Advanced Materials, 26(28), 4838-4844. https://doi.org/10.1002/adma.201401084
Lu, C. L., Chang, C. P., Huang, Y. C., Chen, R. B., & Lin, M. L. (2006). Influence of an electric field on the optical properties of few-layer graphene with AB stacking. Physical Review B, 73(14), 144427. https://doi.org/10.1103/PhysRevB.73.144427
Mak, K. F., Lui, C. H., Shan, J., & Heinz, T. F. (2009). Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. Physical Review Letters, 102(25), 256405. https://doi.org/10.1103/PhysRevLett.102.256405
Malard, L. M., Elias, D. C., Alves, E. S., & Pimenta, M. A. (2008). Observation of distinct electron-phonon couplings in gated bilayer graphene. Physical Review Letters, 101(25), 257401. https://doi.org/10.1103/PhysRevLett.101.257401
McCann, E. (2006). Asymmetry gap in the electronic band structure of bilayer graphene. Physical Review B, 74(16), 161403. https://doi.org/10.1103/PhysRevB.74.161403
McCann, E., & Koshino, M. (2013). The electronic properties of bilayer graphene. Reports on Progress in Physics, 76(5), 056503. https://doi.org/10.1088/0034-4885/76/5/056503
Min, H., Sahu, B., Banerjee, S. K., & MacDonald, A. H. (2007). Ab initio theory of gate induced gaps in graphene bilayers. Physical Review B, 75(15), 155115. https://doi.org/10.1103/PhysRevB.75.155115
Nanda, B. R. K., & Satpathy, S. (2009). Strain and electric field modulation of the electronic structure of bilayer graphene. Physical Review B, 80, 165430. https://doi.org/10.1103/PhysRevB.80.165430
Neto, A. H. C., Guinea, F., Peres, N. M. R., Novoselov, K. S., & Geim, A. K. (2009). The electronic properties of graphene. Reviews of Modern Physics, 81(1), 109. https://doi.org/10.1103/RevModPhys.81.109
Novoselov, K. S., Fal’ko, V. I., Colombo, L., Gellert, P. R., Schwab, M. G., & Kim, K. (2012). A roadmap for graphene. Nature, 490(7419), 192-200. https://doi.org/10.1038/nature11458
Ohta, T., Bostwick, A., Seyller, T., Horn, K., & Rotenberg, E. (2006). Controlling the electronic structure of bilayer graphene. Science, 313(5789), 951-954. https://doi.org/10.1126/science.1130681
Ruseckas, J., Juzeliūnas, G., & Zozoulenko, I. V. (2011). Spectrum of π electrons in bilayer graphene nanoribbons and nanotubes: An analytical approach. Physical Review B, 83(3), 035403. https://doi.org/10.1103/PhysRevB.83.035403
Sahu, B., Min, H., & Banerjee, S. K. (2010). Effects of magnetism and electric field on the energy gap of bilayer graphene nanoflakes. Physical Review B, 81(4), 045414. https://doi.org/10.1103/PhysRevB.81.045414
Scholz, A., Stauber, T., & Schliemann, J. (2012). Dielectric function, screening, and plasmons of graphene in the presence of spin-orbit interactions. Physical Review B, 86(19), 195424. https://doi.org/10.1103/PhysRevB.86.195424
Son, Y. W., Cohen, M. L., & Louie, S. G. (2006). Energy gaps in graphene nanoribbons. Physical Review Letters, 97(21), 216803. https://doi.org/10.1103/PhysRevLett.97.216803
Sun, S. J., & Chang, C. P. (2008). Ballistic transport in bilayer nano-graphite ribbons under gate and magnetic fields. The European Physical Journal B, 64, 249-255. https://doi.org/10.1140/epjb/e2008-00309-4
Vũ, T. T., Nguyễn, T. K. Q., Huỳnh, A. H., Phan, T. K. L., & Trần, V. T. (2017). Modulation of bandgap in bilayer armchair graphene ribbons by tuning vertical and transverse electric fields. Superlattices and Microstructures, 102, 451-458. https://doi.org/10.1016/j.spmi.2016.12.031
Vũ, T. T., Nguyễn, T. K. Q., Nguyễn, T. M. T., Nguyễn, V. C., & Trần, V. T. (2018). Enhancement of the Seebeck effect in bilayer armchair graphene nanoribbons by tuning the electric fields. Superlattices and Microstructures, 113, 616-622. https://doi.org/10.1016/j.spmi.2017.11.042
Vũ, T. T., & Trần, V. T. (2016). Electric gating induced bandgaps and enhanced Seebeck effect in zigzag bilayer graphene ribbons. Semiconductor Science and Technology, 31(8), 085002. https://doi.org/10.1088/0268-1242/31/8/085002
Xu, H., Heinzel, T., & Zozoulenko, I. V. (2009). Edge disorder and localization regimes in bilayer graphene nanoribbons. Physical Review B, 80(4), 045308. https://doi.org/10.1103/PhysRevB.80.045308
Zhang, Y., Tang, T. T., Girit, C., Hao, Z., Martin, M. C., Zettl, A., Crommie, M. F., Shen, Y. R., & Wang, F. (2009). Direct observation of a widely tunable bandgap in bilayer graphene. Nature, 459(7248), 820-823. https://doi.org/10.1038/nature08105
Zhong, X., Pandey, R., & Karna, S. P. (2012). Stacking dependent electronic structure and transport in bilayer graphene nanoribbons. Carbon, 50(3), 784-790. https://doi.org/10.1016/j.carbon.2011.09.033
Downloads
Published
Volume and Issues
Section
Copyright & License
Copyright (c) 2021 Nguyen Lam Thuy Duong, Nguyen Thi Kim Quyen, Pham Nguyen Huu Hanh, Le Dang Khoa, Ngo Van Chinh, Phan Thi Kim Loan, Huynh Anh Huy, Vu Thanh Tra

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.