NONLINEAR PROPERTIES OF STRUCTURAL HETEROGENEOUS PHOTONIC CRYSTAL FIBERS WITH As2Se3 SUBSTRATE
DOI:
https://doi.org/10.37569/DalatUniversity.11.4.985(2021)Keywords:
All-normal dispersion, High nonlinear coefficient, Low confinement loss, Photonic crystal fibers with As2Se3 substrates.Abstract
We examine the possibility of improving the nonlinear properties of photonic crystal fibers (PCFs) with As2Se3 substrates by creating a difference in the diameters of the air holes of the rings around the core. With the new design, all-normal dispersion properties, small effective mode area, high nonlinear coefficient, and low confinement loss were achieved in the long-wavelength range of 2.0–7.0 µm. The highest nonlinear coefficient is 4414.918 W-1.km-1 at 4.5 µm for the lattice constant (Ʌ) of 3.0 µm and the filling factor (d/Ʌ) of 0.85, while the lowest loss is 1.823´10-21 dB/cm with Ʌ = 3.5 µm and d/Ʌ = 0.8. Based on the numerical simulation results, the characteristics of two optimal structures have been analyzed in detail to guide the application in supercontinuum generation.
Downloads
References
Bishwas, M. S., Ahmad, R., Kabir, M. R., Hossen, I., Ul Islam, A. S. M. T., & Faruqe, O. (2021). Mid-infrared supercontinuum generation in AS2Se3 glass based C2H5OH filled square photonic crystal fiber. 2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD) (pp. 245-248).
Biswas, B., Ahmed, K., Paul, B. K., Khalek, Md. A., & Uddin, M. S. (2019). Numerical evaluation of the performance of different materials in nonlinear optical applications. Results in Physics, 13, 102184. https://doi.org/10.1016/j.rinp.2019.102184
Buczyński, R. (2004). Photonic crystal fibers. Acta Physica Polonica Series A, 106, 141-168. https://doi.org/10.12693/APhysPolA.106.141
Chauhan, P., Kumar, A., & Kalra, Y. (2020). Numerical exploration of coherent supercontinuum generation in multicomponent GeSe2-As2Se3-PbSe chalcogenide based photonic crystal fiber. Optical Fiber Technology, 54, 102100. https://doi.org/10.1016/j.yofte.2019.102100
Cherif, R., Salem, A. B., Zghal, M., Besnard, P., Chartier, T., Brilland, L., & Troles, J. (2010). Highly nonlinear As2Se3-based chalcogenide photonic crystal fiber for midinfrared supercontinuum generation. Optical Engineering, 49(9), 095002-6. https://doi.org/10.1117/1.3488042
Eid, M. M. A., Habib, Md. A., Anower, Md. S., & Rashed, A. N. Z. (2021). Highly sensitive nonlinear photonic crystal fiber based sensor for chemical sensing applications. Microsystem Technologies, 27(3), 1007-1014. https://doi.org/10.1007/s00542-020-05019-w
Gao, W., Zhang, X., Jiang, W., Zhang, Z., Gao, P., Chen, L., Wang, P., Zhang, W., Wang, R., Liao, M., Suzuki, T., Ohishi, Y., & Zhou, Y. (2020). Characteristics of vector beams in mid-infrared waveband in an As2Se3 photonic crystal fiber with small hollow core. Optical Fiber Technology, 55(9), 102152. https://doi.org/10.1016/j.yofte.2020.102152
Hasan, M. M., Barid, M., Hossain, Md. S., Sen, S., & Azad, M. M. (2021). Large effective area with high power fraction in the core region and extremely low effective material loss-based photonic crystal fiber (PCF) in the terahertz (THz) wave pulse for different types of communication sectors. Journal of Optics, 50(14), 681-688. https://doi.org/10.1007/s12596-021-00740-9
Hui, Z., Yang, M., Zhang, Y., & Zhang, M. (2018). Mid-infrared high birefringence As2Se3-based PCF with large nonlinearity and distinctive dispersion by using asymmetric elliptical air hole cladding. Modern Physics Letters B, 32(03), 1850023. https://doi.org/10.1142/S0217984918500239
Kabir, Md. A., Ahmed, K., Hassan, Md. M., Hossain, Md. M., & Pau, B. K. (2020). Design a photonic crystal fiber of guiding terahertz orbital angular momentum beams in optical communication. Optics Communications, 475, 126192. https://doi.org/10.1016/j.optcom.2020.126192
Karim, M. R., Ahmad, H., Ghosh, S., & Rahman, B. M. A. (2018). Mid-infrared supercontinuum generation using As2Se3 photonic crystal fiber and the impact of higher-order dispersion parameters on its supercontinuum bandwidth. Optical Fiber Technology, 45, 255-266. https://doi.org/10.1016/j.yofte.2018.07.024
Kaur, V., & Singh, S. (2019). Design of titanium nitride coated PCF-SPR sensor for liquid sensing applications. Optical Fiber Technology, 48, 159-164. https://doi.org/10.1016/j.yofte.2018.12.015
Knight, J. C. (2003). Photonic crystal fibres. Nature, 424(6950), 847-851. https://doi.org/10.1038/nature01940
Lanh, C. V., Hoang, V. T., Long, V. C., Borzycki, K., Khoa, D. X., Quoc, V. T., Trippenbach, M., Buczyński, R., & Pniewski, J. (2019). Optimization of optical properties of photonic crystal fibers infiltrated with chloroform for supercontinuum generation. Laser Physics, 29(7), 075107. https://doi.org/10.1088/1555-6611/ab2115
Lanh, C. V., Hoang, V. T., Long, V. C., Borzycki, K., Khoa, D. X., Quoc, V. T., Trippenbach, M., Buczyński, R., & Pniewski, J. (2020). Supercontinuum generation in photonic crystal fibers infiltrated with nitrobenzene. Laser Physics, 30(3), 035105. https://doi.org/10.1088/1555-6611/ab6f09
Li, F., He, M., Zhang, X., Chang, M., Wu, Z., Liu, Z., & Chen, H. (2018). Elliptical As2Se3 filled core ultra-high-nonlinearity and polarization-maintaining photonic crystal fiber with double hexagonal lattice cladding. Optical Materials, 79, 137-146. https://doi.org/10.1016/j.optmat.2018.03.025
Markin, A. V., Markina, N. E., & Goryacheva, I. Yu. (2017). Raman spectroscopy based analysis inside photonic-crystal fibers. TrAC Trends in Analytical Chemistry, 88, 185-197. https://doi.org/10.1016/j.trac.2017.01.003
Mohammadzadehasl, N., & Noori, M. (2019). Design of low-loss and near-zero ultraflattened dispersion PCF for broadband optical communication. Photonics and Nanostructures - Fundamentals and Applications, 35(7), 100703. https://doi.org/10.1016/j.photonics.2019.100703
Park, K., Na, J., Kim, J, & Jeong, Y. (2020). Numerical study on supercontinuum generation in an active highly nonlinear photonic crystal fiber with anomalous dispersion. IEEE Journal of Quantum Electronics, 56(2), 6800109.
Paul, B. K., Ahmed, K., Dhasarathan, V., Al-Zahrani, F. A., Aktar, Mst. N., Uddin, M. S., & Aly, A. H. (2020). Investigation of gas sensor based on differential optical absorption spectroscopy using photonic crystal fiber. Alexandria Engineering Journal, 59(6), 5045-5052. https://doi.org/10.1016/j.aej.2020.09.030
Paul, B. K., Rajesh, E., Asaduzzaman, S., Islam, Md. S., Ahmed, K., Amiri, I. S., & Zakaria, R. (2018). Design and analysis of slotted core photonic crystal fiber for gas sensing application. Results in Physics, 11, 643-650. https://doi.org/10.1016/j.rinp.2018.10.004
Podder, E., Hossain, Md. B., Jibon, R. H., Bulbul, A. A.-M., & Mondal, H. S. (2019). Chemical sensing through photonic crystal fiber: Sulfuric acid detection. Frontiers of Optoelectronics, 12, 372-381. https://doi.org/10.1007/s12200-019-0903-8
Qi, X., Chen, S., Li, Z., Liu, T., Ou, Y., Wang, N., & Hou, J. (2018). High-power visible-enhanced all-fiber supercontinuum generation in a seven-core photonic crystal fiber pumped at 1016 nm. Optics Letters, 43(5), 1019-1022. https://doi.org/10.1364/OL.43.001019
Saini, T. S., Kumar, A., & Sinha, R. K. (2015). Broadband mid-IR supercontinuum generation in As2Se3 based chalcogenide photonic crystal fiber: A new design and analysis. Optics Communications, 347, 13-19. https://doi.org/10.1016/j.optcom.2015.02.049
Saitoh, K., Koshiba, M., Hasegawa, T., & Sasaoka, E. (2003). Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion. Optics Express, 11(8), 843-852. https://doi.org/10.1364/OE.11.000843
Ung, B., & Skorobogatiy, M. (2010). Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared. Optics Express, 18(8), 8647-8659. https://doi.org/10.1364/OE.18.008647
Wang, X. Y., Li, S. G., Liu, S., Yin, G. B., & Li, J. S. (2012). Generation of a mid-infrared broadband polarized supercontinuum in As2Se3 photonic crystal fibers. Chinese Physics B, 21(5), 054220. https://doi.org/10.1088/1674-1056/21/5/054220
Zhao, T., Lian, Z., Benson, T., Wang X., Zhang, W., & Lou, S. (2017). Highly-nonlinear polarization-maintaining As2Se3-based photonic quasi-crystal fiber for supercontinuum generation. Optical Materials, 73, 343-349. https://doi.org/10.1016/j.optmat.2017.07.010
Downloads
Published
Volume and Issues
Section
Copyright & License
Copyright (c) 2021 Nguyen Thi Thuy, Dao Van Hung
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.