• Nguyen Thi Thuy University of Education, Hue University, Viet Nam,
  • Dao Van Hung Naval Academy, Viet Nam,



All-normal dispersion, High nonlinear coefficient, Low confinement loss, Photonic crystal fibers with As2Se3 substrates.


We examine the possibility of improving the nonlinear properties of photonic crystal fibers (PCFs) with As2Se3 substrates by creating a difference in the diameters of the air holes of the rings around the core. With the new design, all-normal dispersion properties, small effective mode area, high nonlinear coefficient, and low confinement loss were achieved in the long-wavelength range of 2.0–7.0 µm. The highest nonlinear coefficient is 4414.918 at 4.5 µm for the lattice constant (Ʌ) of 3.0 µm and the filling factor (d/Ʌ) of 0.85, while the lowest loss is 1.823´10-21 dB/cm with Ʌ = 3.5 µm and d/Ʌ = 0.8. Based on the numerical simulation results, the characteristics of two optimal structures have been analyzed in detail to guide the application in supercontinuum generation.


Bishwas, M. S., Ahmad, R., Kabir, M. R., Hossen, I., Ul Islam, A. S. M. T., & Faruqe, O. (2021). Mid-infrared supercontinuum generation in AS2Se3 glass based C2H5OH filled square photonic crystal fiber. 2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD) (pp. 245-248).

Biswas, B., Ahmed, K., Paul, B. K., Khalek, Md. A., & Uddin, M. S. (2019). Numerical evaluation of the performance of different materials in nonlinear optical applications. Results in Physics, 13, 102184.

Buczyński, R. (2004). Photonic crystal fibers. Acta Physica Polonica Series A, 106, 141-168.

Chauhan, P., Kumar, A., & Kalra, Y. (2020). Numerical exploration of coherent supercontinuum generation in multicomponent GeSe2-As2Se3-PbSe chalcogenide based photonic crystal fiber. Optical Fiber Technology, 54, 102100.

Cherif, R., Salem, A. B., Zghal, M., Besnard, P., Chartier, T., Brilland, L., & Troles, J. (2010). Highly nonlinear As2Se3-based chalcogenide photonic crystal fiber for midinfrared supercontinuum generation. Optical Engineering, 49(9), 095002-6.

Eid, M. M. A., Habib, Md. A., Anower, Md. S., & Rashed, A. N. Z. (2021). Highly sensitive nonlinear photonic crystal fiber based sensor for chemical sensing applications. Microsystem Technologies, 27(3), 1007-1014.

Gao, W., Zhang, X., Jiang, W., Zhang, Z., Gao, P., Chen, L., Wang, P., Zhang, W., Wang, R., Liao, M., Suzuki, T., Ohishi, Y., & Zhou, Y. (2020). Characteristics of vector beams in mid-infrared waveband in an As2Se3 photonic crystal fiber with small hollow core. Optical Fiber Technology, 55(9), 102152.

Hasan, M. M., Barid, M., Hossain, Md. S., Sen, S., & Azad, M. M. (2021). Large effective area with high power fraction in the core region and extremely low effective material loss-based photonic crystal fiber (PCF) in the terahertz (THz) wave pulse for different types of communication sectors. Journal of Optics, 50(14), 681-688.

Hui, Z., Yang, M., Zhang, Y., & Zhang, M. (2018). Mid-infrared high birefringence As2Se3-based PCF with large nonlinearity and distinctive dispersion by using asymmetric elliptical air hole cladding. Modern Physics Letters B, 32(03), 1850023.

Kabir, Md. A., Ahmed, K., Hassan, Md. M., Hossain, Md. M., & Pau, B. K. (2020). Design a photonic crystal fiber of guiding terahertz orbital angular momentum beams in optical communication. Optics Communications, 475, 126192.

Karim, M. R., Ahmad, H., Ghosh, S., & Rahman, B. M. A. (2018). Mid-infrared supercontinuum generation using As2Se3 photonic crystal fiber and the impact of higher-order dispersion parameters on its supercontinuum bandwidth. Optical Fiber Technology, 45, 255-266.

Kaur, V., & Singh, S. (2019). Design of titanium nitride coated PCF-SPR sensor for liquid sensing applications. Optical Fiber Technology, 48, 159-164.

Knight, J. C. (2003). Photonic crystal fibres. Nature, 424(6950), 847-851.

Lanh, C. V., Hoang, V. T., Long, V. C., Borzycki, K., Khoa, D. X., Quoc, V. T., Trippenbach, M., Buczyński, R., & Pniewski, J. (2019). Optimization of optical properties of photonic crystal fibers infiltrated with chloroform for supercontinuum generation. Laser Physics, 29(7), 075107.

Lanh, C. V., Hoang, V. T., Long, V. C., Borzycki, K., Khoa, D. X., Quoc, V. T., Trippenbach, M., Buczyński, R., & Pniewski, J. (2020). Supercontinuum generation in photonic crystal fibers infiltrated with nitrobenzene. Laser Physics, 30(3), 035105.

Li, F., He, M., Zhang, X., Chang, M., Wu, Z., Liu, Z., & Chen, H. (2018). Elliptical As2Se3 filled core ultra-high-nonlinearity and polarization-maintaining photonic crystal fiber with double hexagonal lattice cladding. Optical Materials, 79, 137-146.

Markin, A. V., Markina, N. E., & Goryacheva, I. Yu. (2017). Raman spectroscopy based analysis inside photonic-crystal fibers. TrAC Trends in Analytical Chemistry, 88, 185-197.

Mohammadzadehasl, N., & Noori, M. (2019). Design of low-loss and near-zero ultraflattened dispersion PCF for broadband optical communication. Photonics and Nanostructures - Fundamentals and Applications, 35(7), 100703.

Park, K., Na, J., Kim, J, & Jeong, Y. (2020). Numerical study on supercontinuum generation in an active highly nonlinear photonic crystal fiber with anomalous dispersion. IEEE Journal of Quantum Electronics, 56(2), 6800109.

Paul, B. K., Ahmed, K., Dhasarathan, V., Al-Zahrani, F. A., Aktar, Mst. N., Uddin, M. S., & Aly, A. H. (2020). Investigation of gas sensor based on differential optical absorption spectroscopy using photonic crystal fiber. Alexandria Engineering Journal, 59(6), 5045-5052.

Paul, B. K., Rajesh, E., Asaduzzaman, S., Islam, Md. S., Ahmed, K., Amiri, I. S., & Zakaria, R. (2018). Design and analysis of slotted core photonic crystal fiber for gas sensing application. Results in Physics, 11, 643-650.

Podder, E., Hossain, Md. B., Jibon, R. H., Bulbul, A. A.-M., & Mondal, H. S. (2019). Chemical sensing through photonic crystal fiber: Sulfuric acid detection. Frontiers of Optoelectronics, 12, 372-381.

Qi, X., Chen, S., Li, Z., Liu, T., Ou, Y., Wang, N., & Hou, J. (2018). High-power visible-enhanced all-fiber supercontinuum generation in a seven-core photonic crystal fiber pumped at 1016 nm. Optics Letters, 43(5), 1019-1022.

Saini, T. S., Kumar, A., & Sinha, R. K. (2015). Broadband mid-IR supercontinuum generation in As2Se3 based chalcogenide photonic crystal fiber: A new design and analysis. Optics Communications, 347, 13-19.

Saitoh, K., Koshiba, M., Hasegawa, T., & Sasaoka, E. (2003). Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion. Optics Express, 11(8), 843-852.

Ung, B., & Skorobogatiy, M. (2010). Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared. Optics Express, 18(8), 8647-8659.

Wang, X. Y., Li, S. G., Liu, S., Yin, G. B., & Li, J. S. (2012). Generation of a mid-infrared broadband polarized supercontinuum in As2Se3 photonic crystal fibers. Chinese Physics B, 21(5), 054220.

Zhao, T., Lian, Z., Benson, T., Wang X., Zhang, W., & Lou, S. (2017). Highly-nonlinear polarization-maintaining As2Se3-based photonic quasi-crystal fiber for supercontinuum generation. Optical Materials, 73, 343-349.




Volume and Issues


Natural Sciences and Technology

How to Cite

Nguyen, T. T., & Dao, V. H. (2021). NONLINEAR PROPERTIES OF STRUCTURAL HETEROGENEOUS PHOTONIC CRYSTAL FIBERS WITH As2Se3 SUBSTRATE. Dalat University Journal of Science, 11(4), 113-128.