THE THOM CONDITION
DOI:
https://doi.org/10.37569/DalatUniversity.12.2.998(2022)Keywords:
Minor fibration, Thom condition, Vanishing cyles.Abstract
In this note we explain the notion of the Thom condition for the Whitney stratifications of a complex analytic map. We give a question P. Deligne and indicate a possible way to answer it.
Metrics
References
Briançon, J., Merle, M., & Maisonobe, P., (1994). Localisation de systèmes différentiels, stratifications de Whitney et condition de Thom. Inventiones Mathematicae, 117 (3), 531-550. https://doi.org/10.1007/BF01232255
Hamm, H. A., & Lê, D. T. (1973). Un théorème de Zariski du type de Lefschetz. Annales Scientifiques de l’École Normale Supérieure, 6(3), 317-355. https://doi.org/10.24033/asens.1250
Hironaka, H. (1977). Stratification and flatness. In P. Holm (Ed.), Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Symposium in Mathematics, Oslo, 1976) (pp. 199-265). Sijthoff and Noordhoff.
Lê, D. T., Nuño-Ballesteros, J. J., & Seade, J. (2020). The topology of the Milnor fibration. In J. L. Cisneros Molina, D. T. Lê, & J. Seade (Eds.), Handbook of geometry and topology of singularities I (pp. 321-388), Springer. https://doi.org/10.1007/978-3-030-53061-7_6
Milnor, J. (1968). Singular points of complex hypersurfaces. Princeton University Press. https://doi.org/10.1515/9781400881819
Sabbah, C. (1983). Morphismes analytiques stratifiés sans éclatement et cycles évanes Astérisque, 101-102, 286-319.
Thom, R. (1969) Ensembles et morphismes stratifiés, Bulletin of the American Mathematical Society, 75, 240-284. https://doi.org/10.1090/S0002-9904-1969-12138-5
Downloads
Published
Volume and Issues
Section
Copyright & License
Copyright (c) 2022 Le Dung Trang.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.